3.4 Components of a Vector \& Unit Vectors

1.) In the diagram below, identify the trigonometric value of the component vectors of the resultant.

2.) Find the component vectors $A x$ and $A y$.
a)

b)

c)

d)

3.) What are unit vectors?
4.) Write out the unit vectors of A.
5.) Find the sum of A and B in unit vectors.
6.) Find the sum of two vectors A and B lying in the $x y$ plane and given by:

$$
A=(2.0 \mathrm{i}+2.0 \mathrm{j}) \mathrm{m} \text { and } B=(2.0 \mathrm{i}+4.0 \mathrm{j}) \mathrm{m}
$$

7.) A particle undergoes three consecutive displacements:

$$
d_{1}=(15 i+30 j+12 k) c m, d_{2}=(23 i+14 j+5.0 k) c m \text { and } d_{3}=(13 i+15 j) c m .
$$

Find the components of the resultant displacement and its magnitude.
8.) A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
a) Determine the components of the hiker's displacement for each day.
b) Determine the components of the hiker's resultant displacement R for the trip. Find an expression for R in terms of unit vectors.
9.) A commuter airplane takes the route shown in the illustration. First, it flies from the origin of the coordinate system shown to city A, located 175 km in a direction 30.0° north of east. Next, it flies $153 \mathrm{~km} 20.0^{\circ}$ west of north to city B. Finally, it flies 195 km due west to city C . Find the location of city C relative to the origin.

10.) While exploring a cave, a spelunker starts at the entrance and moves the following distances. She goes 75.0 m north, 250 m east, 125 m at an angle 30.0° north of east, and 150 m south. Find the resultant displacement from the cave entrance.
11.) A map suggests that Atlanta is 730 miles in a direction of 5.00° north of east from Dallas. The same map shows that Chicago is 560 miles in a direction of 21.0° west of north from Atlanta. Modeling the Earth as flat, use this information to find the displacement from Dallas to Chicago.
12.) Given the vectors $A=2.00 i+6.00 j$ and $B=3.00 i+2.00 j$,
a) draw the vector sum $C=A+B$ and the vector difference $D=A-B$.
b) Calculate C and D, first in terms of unit vectors and then in terms of polar coordinates, with angles measured with respect to the $+x$ axis.
13.) Find the magnitude and direction of the resultant of three displacements having rectangular components $(3.00,2.00) \mathrm{m},(-5.00,3.00) \mathrm{m}$, and $(6.00,1.00) \mathrm{m}$.
14.) A man pushing a mop across a floor causes it to undergo two displacements. The first has a magnitude of 150 cm and makes an angle of 120° with the positive x axis. The resultant displacement has a magnitude of 140 cm and is directed at an angle of 35.0° to the positive x axis. Find the magnitude and direction of the second displacement.

