W-GC General Chemistry Week 4 9/27
Gold: Density $19.3 \mathrm{~g} / \mathrm{mL}$
Statue 5 metric $=$ \qquad grams

$$
5 \text { tonnes } * \frac{1000 \mathrm{k} / \mathrm{g}}{1 \text { tonne }} * \frac{1000 \mathrm{~g}}{1 \mathrm{kgg}}
$$

1 significant figure

$$
\begin{aligned}
& 5 \text { tonnes } * \frac{10^{3} \mathrm{~kg}}{1 \text { tonne }} * \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \\
& 5 * 10^{3+3}=5 * 10^{6} \mathrm{~g}=\text { mass } \\
& V D=\left(\frac{M}{V}\right) V \quad V=\frac{M}{D} \quad \begin{array}{l}
\mathrm{M} \\
\frac{V D}{D}=\frac{M}{D} \quad V=\frac{M}{D} \\
19.39 / \mathrm{mL} \\
\begin{array}{l}
300000 \mathrm{~mL} \\
3 * 10^{5} \mathrm{~mL}
\end{array}
\end{array}
\end{aligned}
$$

B Statue: $3 * 10^{5} \mathrm{~mL}$ Volume of a Frosty?
κ^{1} sigfigs

$$
\begin{aligned}
& \text { K.sigtigs } \\
& 20 \text { pt } * \frac{29.6 \mathrm{~mL}}{10 z}=592 \mathrm{~mL} \\
& B \\
& \text { Volume }=3 * 10^{5} \mathrm{~mL}
\end{aligned}
$$

each Frosty 600 mL How many frosty cup would it take to contain 1 Buddha

$$
\begin{aligned}
& 3 * 10^{5} \mathrm{~mL} \\
& 300,000
\end{aligned} \frac{1 \text { Frosty cup }}{600 \mathrm{~mL}}=500 \text { cups }
$$

1.)

Mass: 28.5 g
Volume: 764 mL

$$
D=? \quad D=\frac{M}{V}
$$

$$
\begin{aligned}
& D=\frac{28.5 \mathrm{~g}}{76 \mathrm{sf}} \mathrm{fL}=0.03730 \mathrm{~g} / \mathrm{mL} \\
& 3 \mathrm{mf} \quad 0.0373 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

2.) Density: $2.16 \mathrm{~g} / \mathrm{mL} \quad M=$?

Volume: 8.3 mL

$$
V D=\left(\frac{M}{V}\right) V
$$

$$
M=V D=\underbrace{(8.3 \mathrm{n} t) \underbrace{2.16 \mathrm{~g} \ln t}_{3 \mathrm{ff}})=17.928 \mathrm{~g} \mathrm{~g} \mathrm{~g} \mathrm{~g}}_{2 \mathrm{sf}}
$$

Farenheit scale

Celsius \rightarrow is based on the freezing and boiling point of water.

Kelvin \rightarrow based off of absolute zero
Absolute zero \rightarrow no movement. ($-273.15^{\circ} \mathrm{C}$, temperature is based off if movement

$$
\begin{aligned}
K & ={ }^{\circ} \mathrm{C}+273 \\
40^{\circ} \mathrm{C} & =K \\
K & =40+273=313 K \\
K & =K-273
\end{aligned}
$$

$415 K=?$

$$
\begin{aligned}
{ }^{\circ} \mathrm{C}=415-273 & =142^{\circ} \mathrm{C} \\
18^{\circ} \mathrm{C}=\mathrm{F} \text { of }= & 32+1.8\left({ }^{\circ} \mathrm{C}\right) \\
= & 32+1.8(18) \\
& 32+32.4 \\
= & 64.4=64^{\circ} \mathrm{F}
\end{aligned}
$$

$$
95^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}
$$

$$
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)
$$

$$
\frac{5}{9}(95-32)
$$

$$
\frac{5}{9}(63)^{\circ}=35^{\circ} \mathrm{C}
$$

A Comparison of Temperature Scales

Convert $172.9^{0} \mathrm{~F}$ to degrees Celsius.

$$
\begin{aligned}
0 \mathrm{~F} & =\frac{9}{5} \times{ }^{0} \mathrm{C}+32 \\
0 \mathrm{~F}-32 & =\frac{9}{5} \times{ }^{0} \mathrm{C} \\
\frac{5}{9} \times\left({ }^{\circ} \mathrm{F}-32\right) & ={ }^{0} \mathrm{C} \\
{ }^{0} \mathrm{C} & =\frac{5}{9} \times\left({ }^{\circ} \mathrm{F}-32\right) \\
{ }^{\circ} \mathrm{C} & =\frac{5}{9} \times(172.9-32)=78.3
\end{aligned}
$$

Chemistry In Action

On 9/23/99, \$125,000,000 Mars Climate Orbiter entered Mar's atmosphere 100 km (62 miles) lower than planned and was destroyed by heat.

$$
\begin{aligned}
& 1 \mathrm{lb} \times 1 \mathrm{~N} \\
& 1 \mathrm{lb}=4.45 \mathrm{~N}
\end{aligned}
$$

"This is going to be the cautionary tale that will be embedded into introduction to the metric system in elementary school, high school, and college science courses till the end of time."

Scientific Notation

The number of atoms in 12 g of carbon:

$$
\begin{gathered}
602,200,000,000,000,000,000,000 \\
6.022 \times 10^{23}
\end{gathered}
$$

The mass of a single carbon atom in grams:
0.0000000000000000000000199

$$
1.99 \times 10^{-23}
$$

Scientific Notation

568.762

\leftarrow move decimal left

$$
n>0
$$

$568.762=5.68762 \times 10^{2}$

Addition or Subtraction

1. Write each quantity with the same exponent n
2. Combine N_{1} and N_{2}
3. The exponent, n, remains the same
0.00000772
\longrightarrow move decimal right

$$
n<0
$$

$0.00000772=7.72 \times 10^{-6}$

Scientific Notation

Multiplication

1. Multiply N_{1} and N_{2}
2. Add exponents n_{1} and n_{2}

$$
\begin{array}{r}
\left(4.0 \times 10^{-5}\right) \times\left(7.0 \times 10^{3}\right)= \\
(4.0 \times 7.0) \times\left(10^{-5+3}\right)= \\
28 \times 10^{-2}= \\
2.8 \times 10^{-1}
\end{array}
$$

Division

1. Divide N_{1} and N_{2}
2. Subtract exponents n_{1} and n_{2}
$8.5 \times 10^{4} \div 5.0 \times 10^{9}=$
$(8.5 \div 5.0) \times 10^{4-9}=$ 1.7×10^{-5}

Significant Figures

- Any digit that is not zero is significant
1.234 kg 4 significant figures
- Zeros between nonzero digits are significant
$606 \mathrm{~m} \quad 3$ significant figures
- Zeros to the left of the first nonzero digit are not significant
$0.08 \mathrm{~L} \quad 1$ significant figure
- If a number is greater than 1 , then all zeros to the right of the decimal point are significant
$2.0 \mathrm{mg} \quad 2$ significant figures
- If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant
0.00420 g 3 significant figures

How many significant figures are in each of the following measurements?

24 mL

3001 g
$0.0320 \mathrm{~m}^{3}$
6.4×10^{4} molecules

560 kg

2 significant figures

4 significant figures
3 significant figures
2 significant figures
2 significant figures

Significant Figures

Addition or Subtraction

The answer cannot have more digits to the right of the decimal point than any of the original numbers.
$\frac{89.332}{+1.1}$ 90.432 \longleftarrow one significant figure after decimal point
$3.70 \longleftarrow$ two significant figures after decimal point
-2.9133
0.7867 ~ round off to 0.79

Significant Figures

Multiplication or Division

The number of significant figures in the result is set by the original number that has the smallest number of significant figures

$$
6.8 \div 112.04=0.0606926=0.061
$$

Significant Figures

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures

The average of three measured lengths; 6.64, 6.68 and 6.70 ?

$$
\frac{6.64+6.68+6.70}{3}=6.67333=6.67=7
$$

Because 3 is an exact number

Accuracy - how close a measurement is to the true value Precision - how close a set of measurements are to each other

accurate
\&
precise

precise but
not accurate

not accurate
\&
not precise

Dimensional Analysis Method of Solving Problems

1. Determine which unit conversion factor(s) are needed
2. Carry units through calculation
3. If all units cancel except for the desired unit(s), then the problem was solved correctly.
given quantity x conversion factor $=$ desired quantity

Dimensional Analysis Method of Solving Problems

How many mL are in 1.63 L?

Conversion Unit $1 \mathrm{~L}=1000 \mathrm{~mL}$

The speed of sound in air is about $343 \mathrm{~m} / \mathrm{s}$. What is this speed in miles per hour?

conversion units

meters to miles
seconds to hours
$1 \mathrm{mi}=1609 \mathrm{~m} \quad 1 \mathrm{~min}=60 \mathrm{~s} \quad 1$ hour $=60 \mathrm{~min}$

