W-GC General Chemistry $9 / 29$
SI Unit
Length \rightarrow meter
mass \rightarrow kilogram
time \rightarrow second
temperature \rightarrow kelvin
"amount of substance" \rightarrow mole

10^{-1}	decid	10^{3}
kilo		
10^{-2}	centic	10^{6}
10^{-3}	Mega	
10^{-6}	millie m	10^{9}
	Gigo	
12	10^{12}	Tern

10^{-9} nano n
10^{-12} pica p

$$
D=\frac{\text { mass }}{\text { volume }} 9 / \mathrm{cm}^{3} \quad D=\frac{M}{V} \quad V(D)=\left(\frac{M}{V}\right) V
$$

1.) Thin - $38 \mathrm{~g}_{38 \mathrm{~g}} 8.2 \mathrm{~cm}^{3}$ dmsit?

$$
D=\frac{38 \mathrm{~g}}{8.2 \mathrm{~cm}^{2}}=4.69 / \mathrm{cm}^{3}
$$

2 Thing $\beta \quad 23.1(9) / \mathrm{cm}^{3} \quad 7.8 \mathrm{~cm}^{3}$ mass? $M=V D$

$$
\left(23.1 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(7.8 \mathrm{~cm}^{3}\right)=180 \mathrm{~g}
$$

3. Thing $c \quad 48 \mathrm{~g} \quad 9.2 \mathrm{~g} / \mathrm{cm}^{3} \quad \frac{\mathrm{~g}}{\mathrm{~g}}$ volume

$$
\begin{equation*}
\frac{48 \mathrm{~g}}{9.25} 1 \mathrm{~cm}^{3}=5.2 \mathrm{~cm}^{3} \tag{M}
\end{equation*}
$$

Temperature Scales
${ }^{\circ} \mathrm{C} \rightarrow \mathrm{K}$

$$
\begin{aligned}
& { }^{\circ} \mathrm{C}+273 \rightarrow K \\
& K-273 \rightarrow{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$325 \mathrm{~K} \rightarrow 52^{\circ} \mathrm{C}$
celsius temperature scale

0°	100°
feezing	boiling
per	pt

kelvin temperature scale movement \rightarrow absolute zero $O K \longrightarrow-273^{\circ} \mathrm{C}$
$\left.\begin{array}{rr}325 \\ -273 \\ 52\end{array}\right) \begin{gathered}127^{\circ} \mathrm{C} \\ 127+273\end{gathered}$
${ }^{\circ} \mathrm{C} \rightarrow$ OF $\quad \frac{9}{5} *{ }^{\circ} \mathrm{C}+32=\frac{4}{\mathrm{~F}} \begin{gathered}40\left(\frac{9}{5}\right)+32 \\ 36+32=68 \cdot \mathrm{f}\end{gathered}$
${ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C} \quad \frac{5}{9}(F-32)=\frac{}{C}$
$20^{\circ} \mathrm{C} \rightarrow \quad{ }^{\circ} \mathrm{F}$
$\frac{5}{9}(77-32)=\frac{5}{9}\left(\frac{5}{55}\right)=25^{\circ} \mathrm{C}$
$77 \circ \mathrm{~F} \rightarrow \quad{ }^{\circ} \mathrm{C}$
(.) 47800000

$$
4.78 * 10^{7}
$$

3.) $\frac{950100000000}{9.501 * 10^{11}}$

$$
\text { 5.) } \underbrace{(\underbrace{2.5}}_{\underbrace{0.00000253}_{2.53 * 10^{-6}}}
$$

1.) 0.000006

$$
6 * 10^{-6}
$$

2.) 6825000

$$
6.825 * 10^{6}
$$

4.) 800000

$$
8 * 10^{5}
$$

6.) 0.001028

$$
1.028 \times 10^{-3}
$$

8.) 0.000789

$$
7.89 * 10^{-4}
$$

Dimensional Analysis

1.) Burritos are amazing. The standard burrito is 6 inches long and delicious. The moon is, at any given time, 238,900 miles from the earth. How many burritos away is the moon from the earth?

12 inches $=1$ foot 5,280 feet $=1$ mile 1 supreme $=$ beans, guac and ques
Write in scientific notation.
23819

$$
2,522 * 10^{9} \text { burritos }
$$

2.) Craters be thirsty. A Big Gulp soft drink at $7-11$ is 30 ounces. The Grand Canyon is big. Seriously. It has a volume of $5,450,000,000,000$ cubic yards.

1 ounce $=1.805$ cubic feet 1 cubic yard $=27$ cubic feet

Write in scientific notation.

