Matter - anything that occupies space and has mass.

weight – force that gravity exerts on an object F = ma F = mg dependent on gravity weight = c x mass A 1 kg bar will weigh

on earth, c = 1.0

on moon, *c* ~ 0.1

1 kg on earth 0.1 kg on moon

International System of Units (SI)

TABLE 1.3 Prefixes Used with SI Units

Prefix	Symbol	Meaning		Example
tera-	Т	1,000,000,000,000, or	10^{12}	1 terameter (Tm) = 1×10^{12} m
giga-	G Go	[∧] 1,000,000,000, or 10 ⁹		1 gigameter (Gm) = 1×10^9 m
mega-	M M	² 1,000,000, or 10 ⁶		1 megameter (Mm) = 1×10^6 m
kilo-	k ko	91,000, or 10^3	205	1 kilometer (km) = 1×10^3 m
deci-	d dog	$1/10$, or 10^{-1}	1/25	1 decimeter (dm) = 0.1 m
centi-	c cat	$1/100$, or 10^{-2}	d	1 centimeter (cm) = 0.01 m
milli-	m mbu	$1/1,000$, or 10^{-3}	all	millimeter (mm) = 0.001 m
micro-	μ	$1/1,000,000, \text{ or } 10^{-6}$	s s	1 micrometer (μ m) = 1 × 10 ⁻⁶ m
nano-	n	1/1,000,000,000, or 10	-9	1 nanometer (nm) = 1×10^{-9} m
pico-	р	1/1,000,000,000,000, or	$r 10^{-12}$	1 picometer (pm) = 1×10^{-12} m

Volume – SI derived unit for volume is cubic meter (m³)

Density – SI derived unit for density is kg/m³

 $1 \text{ g/cm}^3 = 1 \text{ g/mL} = 1000 \text{ kg/m}^3$

density = $\frac{\text{mass}}{\text{volume}}$ $d = \frac{m}{V}$ $\sqrt{\left(D\right)} = \left(\frac{M}{V}\right)V$ M = M = VDA piece of platinum metal with a density of 21.5 g/ cm³ has a volume of 4.49 cm³. What is its mass?

$$d = \frac{m}{V}$$

 $m = d \times V = 21.5 \text{ g/cm}^3 \times 4.49 \text{ cm}^3 = 96.5 \text{ g}$

TABLE 1.4

Densities of Some Substances at 25°C

Substance	Density (g/cm³)	
Air*	0.001	
Ethanol	0.79	
Water	1.00	
Mercury	13.6	
Table salt	2.2	
Iron	7.9	
Gold	19.3	
Osmium [†]	22.6	

*Measured at 1 atmosphere. [†]Osmium (Os) is the densest element known.

Antimony Sb :6.697 glml Molybdenum Mo 10.2%/L
Tungsten W 19.25 glml Vanadium V 6.0 glml
Carbon C 1.82 glmL Cobalt Co 8.9 glml
2inc Z 7.14 glmL Bismuth B; 9.8 glml
Chromium Cr 7.19 glmL Copper Ch 8.96 glml
Titanium Ti 4.506 glmL Niobium Nb 8.67 glmL
Aluminum AI 2.7 glmL
Iron Fe 7.86 glmL

$$V = \frac{M}{D}$$
 $V = \frac{12}{3}$
V = $\frac{8.23 \text{ bf}}{5.30 \text{ bg}/\text{mL}}$