Matter - anything that occupies space and has mass.

mass - measure of the quantity of matter

SI unit of mass is the kilogram (kg)

$$
1 \mathrm{~kg}=1000 \mathrm{~g}=1 \times 10^{3} \mathrm{~g}
$$

weight -force that gravity exerts on an object $F=m a \quad \overline{F=m g}$ weight $=c \times$ mass dependent on gravity A 1 kg bar will weigh on earth, $c=1.0$

1 kg on earth
0.1 kg on moon

International System of Units (SI)

TABLE 1.2 SI Base Units

Base Quantity

Name of Unit

TABLE 1.3 Prefixes Used with SI Units

Prefix Symbol Meaning Example

Volume - SI derived unit for volume is cubic meter (m^{3})

Density - SI derived unit for density is $\mathrm{kg} / \mathrm{m}^{3}$

$$
1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{mL}=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

$$
d=\frac{m}{V}
$$

$V(D)=\left(\frac{M}{V}\right) V \quad M=\quad M=V D$
A piece of platinum metal with a density of $21.5 \mathrm{~g} /$ cm^{3} has a volume of $4.49 \mathrm{~cm}^{3}$. What is its mass?

$$
\begin{aligned}
& d=\frac{m}{V} \\
& m=d \times V=21.5 \mathrm{~g} / \mathrm{cm}^{3} \times 4.49 \mathrm{~cm}{ }^{3}=96.5 \mathrm{~g}
\end{aligned}
$$

TABLE 1.4

Densities of Some

Substances at $25^{\circ} \mathrm{C}$

Substance	Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Air**	0.001
Ethanol	0.79
Water	1.00
Mercury	13.6
Table salt	2.2
Iron	7.9
Gold	19.3
Osmium †	22.6

*Measured at 1 atmosphere.
${ }^{\dagger}$ Osmium (Os) is the densest element
known.

W-GC General Chemistry Week 3 9/20
Nate's NoNuts Donuts
mass: 28.4 kg
volume: 236 mL

$$
\begin{gathered}
D=\frac{M}{V} \\
D=\frac{M}{V}=\frac{28.4 \mathrm{~kg}}{236 \mathrm{~mL}}=0.120 \frac{\mathrm{~kg}}{\mathrm{~mL}}
\end{gathered}
$$

Density \rightarrow intensive property not dependent on amount.

through
water displacement \rightarrow found volume
ransom mass through counterweights

$$
D=\frac{M}{V}
$$

Fe iron $p=7.86 \quad 1 \mathrm{~mL}$ block of Fe

$$
\begin{aligned}
& V(D)=\left(\frac{M}{V}\right) V \quad M=? \\
& M=D \cdot V=7.869 / \mathrm{mL} \frac{1 \mathrm{~mL}}{7.86 \mathrm{~g}}=
\end{aligned}
$$

$$
8.01 \mathrm{~g}
$$

Antimony $\mathrm{Sb} \quad 6.697 \mathrm{~g} / \mathrm{mL} \quad$ Molybdenum $M_{0} 10.2 \mathrm{~g} / \mathrm{mL}$
Tungsten W $19.25 \mathrm{~g} / \mathrm{mL}$ Vanadium V $6.0 \mathrm{~g} / \mathrm{mL}$
carbon C $1.82 \mathrm{~g} / \mathrm{mL}$ Cobalt Co $8.9 \mathrm{~g} / \mathrm{mL}$
zinc $\quad 7 \quad 7.14 \mathrm{~g} / \mathrm{mL}$ Bismuth Bi $9.8 \mathrm{~g} / \mathrm{mL}$
Chromium $C_{v} 7.19 \mathrm{~g} / \mathrm{mL}$ Copper $C_{u} 8.96 \mathrm{~g} / \mathrm{mL}$
Titanium $T_{i} \quad 4.506 \mathrm{~g} / \mathrm{mL}$ Niobium $\mathrm{Nb} 8.67 \mathrm{~g} / \mathrm{mL}$
Aluminum Al $2.7 \mathrm{~g} / \mathrm{mL}$
Iron $\mathrm{Fe} 7.86 \mathrm{~g} / \mathrm{mL}$

Mass: 8.23 kg
Density: $5.30 \mathrm{~kg} / \mathrm{ml}$

$$
D=\frac{M}{V}
$$

$$
V=\frac{M}{D}
$$

$$
\begin{aligned}
& 4=\frac{12}{3} \\
& 3=\frac{12}{4}
\end{aligned}
$$

volume:?

$$
V=\frac{8.23 \mathrm{~kg}}{5.30 \mathrm{~kg} / \mathrm{mL}}\{1.55 \mathrm{~mL}
$$

