General Chemistry Chapter 5 Pre-Test

1.) (2 pts each, 16 pts total) Use your knowledge of ideal gas laws to answer each of the following. Assume all other relevant factors are constant.
a) As the pressure of an ideal gas increases, the volume must (increase or decrease) $P \uparrow \underset{\text { decrease }}{\text { der }} \quad P V=n R T$
b) As the volume of an ideal gas decreases, the temperature must (increase or decrease)

$$
v \downarrow \quad \rho \uparrow
$$

c) As the volume of an ideal gas decreases, the pressure must (increase or decrease)

$$
\text { incread } \quad P V=n l T
$$

d) As the temperature of an ideal gas increases, the pressure must (increase or decrease)
(e) As the amount

e) As the amount of an ideal gas increases, the pressure must (increase or decrease)

f) As the amount of an ideal gas decreases, the volume must (increase or decrease)

g) As the pressure of an ideal gas increases, the temperature must (increase or decrease)

h) As the temperature of an ideal gas increases, the volume must (increase or decrease)
2.) (12 pts) A sample of argon gas has a pressure of 628 torr and a volume of 2.54 L . What is the volume of the gas if the pressure is adjusted to 846 torr?

3.) (12 pts) A 7.84 L sample of carbon dioxide gas has a temperature of $38.0^{\circ} \mathrm{C}$. What is the volume of the same gas if the temperature is adjusted to $52.0^{\circ} \mathrm{C}$?
4.) (12 pts) A sealed container of water vapor has a pressure of 1.00 atm and a temperature of $37^{\circ} \mathrm{C}$. What is the temperature of the sealed gas if the pressure is increased to 1.86 atm?

$$
P_{1}=1.00 \mathrm{atan} \quad T_{1}=37^{\circ} \mathrm{C}+273=310 \mathrm{~K}
$$

$$
P_{2}=1.86 \mathrm{~atm} \quad T_{2}=?
$$

$$
T_{2}=\frac{T_{1} P_{2}}{P_{1}}
$$

$$
x_{1} T_{1} \quad x_{2} T_{2}
$$

$$
\frac{T_{2} P_{1}}{P_{1}}=\frac{T_{1} P_{2}}{P_{1}}=\frac{(310 \mathrm{k})(1.86 \mathrm{~atm})}{1.00 \mathrm{abh}}=576.6 \mathrm{~K}
$$

0.88 atm
5.) (12 pts) What is the volume of a 0.74 mol sample of oxygen gas at 690 torr at a temperature of $78.0^{\circ} \mathrm{C}$?

$$
\begin{array}{rlrl}
V=? & n & =0.74 \mathrm{~mol} \quad P=0.88 \mathrm{~atm} \\
& T & =28.0^{\circ} \mathrm{C} \\
\frac{P V}{P}=\frac{n R T}{P} \\
V & =\frac{n R T}{P} \\
& =\frac{(0.74 \mathrm{~mol})(0.6821)(351 \mathrm{~K})}{0.88 \mathrm{~atm}} \\
& =\frac{24.23 \mathrm{~L}}{}
\end{array}
$$

6.) (12 pts) A 1.85 L container of 4.92 g of an unknown ideal gas is measured at 1.50 atm and $29.0^{\circ} \mathrm{C}$. What is the molar mass of the gas?

$$
\begin{aligned}
& \left\{V=1.85 \mathrm{~L} \quad 4.92 \mathrm{~g}=\text { mass } \quad P_{1}=1.50 \mathrm{~atm}\right. \\
& \begin{array}{l}
T=\frac{1}{29.0^{\circ} \mathrm{C}} \begin{array}{l}
273 \\
\frac{\text { Molar }}{302} \\
\text { mass }
\end{array} \quad \Omega=0.0821 / \text { mol }=\frac{\text { mass }}{n}, ~
\end{array} \\
& \text { Molar mass }
\end{aligned}
$$

7.) (12 pts) What volume of carbon dioxide is produced from a reaction at $46^{\circ} \mathrm{C}$ and 1.15 atm with 7.35 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ and a seemingly unlimited supply of oxygen? Please balance the reaction prior to solving.

$$
\begin{aligned}
& \begin{array}{l}
T=46^{\circ} \mathrm{C} \quad V^{7}, \\
P=1.15 \mathrm{~atm}
\end{array} \\
& 1 \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{SO}_{2}-3 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { 1.) } \mathrm{mol} \text { of } \\
& \mathrm{CO}_{2} \\
& \Omega=0.0821 \quad 100 x \\
& m=7.35 \mathrm{~g}_{3} \mathrm{H}_{8} \quad 46+273=319 \mathrm{~K} \\
& \mathbb{C} 7.35 \mathrm{~g} \mathrm{C} \mathrm{H}_{8} * \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{\approx 44 \mathrm{~g} / \mathrm{mol}} \frac{3 \mathrm{~mol} \mathrm{Cl}}{2} 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{Hg}_{8} \\
& \frac{P V}{P} \frac{n(l T}{P} \quad 44.09 \quad 0.50 \mathrm{~mol}=\mathrm{n} \\
& V=\frac{n R T}{P}=\frac{(0.50 \mathrm{~mol})(0.0821)(319 \mathrm{k})}{1.15 \mathrm{~atm}}=11.38 \mathrm{~L}
\end{aligned}
$$

8.) (12 pts) What is the partial pressure of nitrogen dioxide if 0.608 mol of nitrogen dioxide is combined with 1.24 mol of oxygen and 0.382 moles of hydrogen gas where the total pressure of the gas is 1.76 atm ?

$$
\begin{aligned}
& \mathrm{NO}_{2}=0.608 \mathrm{~mol} \quad P_{T_{0}+}=1.76 \text { atm } \\
& \mathrm{O}_{2}=1.24 \mathrm{~mol} \\
& \mathrm{H}_{2}=0.382 \mathrm{~mol} \quad \text { molar fractim of } \mathrm{NO}_{2} \\
& \frac{\text { moles ofNO }}{\text { tot moles }} \frac{0.608 \text { mot }}{(0.608+1.24+0.382) \mathrm{mot}}=\frac{0.608}{2.23}=0.272 \\
& 0.272(1.76 \mathrm{~atm})=0.478 \mathrm{~atm}
\end{aligned}
$$

Please use $0.0821^{\mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}}$ as the universal gas constant.

