Boyle's Law

Increasing or decreasing the volume of a gas at a constant temperature

$$
V_{2}=\frac{P_{1} V_{1}}{P_{2}}
$$

Boyle's Law $P=(n R T) \frac{1}{V} \quad n R T$ is constant

$$
\frac{12}{8}=5.52
$$

Charles Law
Heating or cooling a gas at constant pressure

$$
\frac{P V}{T}=n R \quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Heating or cooling a gas at constant volume

$$
V_{1}=3.6 \mathrm{~L} \quad T_{2}=300 \mathrm{~K}
$$

$$
T=250 \mathrm{k}
$$

Lower temperature
(Pressure decreases)
$\frac{P_{1} T_{2}}{P_{1}}=\frac{T_{1} P_{2}}{P_{1}}$

$$
\begin{aligned}
& \text { Charles's Law }
\end{aligned}
$$

Avogadro's Law

Dependence of volume on amount of gas at constant temperature and pressure

Avogadro's Law

$$
V=\left(\frac{R T}{P}\right) n \quad \frac{R T}{P} \text { is constant }
$$

Ideal Gas Equation

Boyle's law: $\mathrm{P} \alpha \frac{1}{V}($ at constant n and $T)$
Charles' law: $V \propto T$ (at constant n and P)
Avogadro's law: V αn (at constant P and T)
$V \propto \frac{n T}{P}$
$V=$ constant $\mathrm{x} \quad \frac{n T}{P}=R \quad \frac{n T}{P} \quad R$ is the gas constant

$$
P V=n R T
$$

The conditions $0{ }^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L .

$$
\begin{aligned}
& P V=n R T \\
& R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})} \\
& R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K})
\end{aligned}
$$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
& T=0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\
& P=1 \mathrm{~atm} \\
& P V=n R T \\
& V=\frac{n R T}{P} \\
& n=49.8 \mathrm{~g} \mathrm{x} \quad \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol} \\
& V=\frac{1.37 \text { mot x } 0.0821 \frac{\text { Lett }}{\text { mot }} 273.15 \mathrm{~K} /}{1 \text { atmi }} \\
& V=30.7 \mathrm{~L}
\end{aligned}
$$

Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and $18{ }^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. What is the final pressure of argon in the lightbulb (in atm)?

$$
P V=n R T \quad n, V \text { and } R \text { are constant }
$$

$$
\begin{array}{lll}
\frac{n R}{V}=\frac{P}{T}=\mathrm{constant} & P_{1}=1.20 \mathrm{~atm} \\
T_{1}=291 \mathrm{~K}
\end{array} \quad \begin{aligned}
& P_{2}=? \\
& T_{2}=358 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\
& P_{2}=P_{1} \times \quad \frac{T_{2}}{T_{1}}=1.20 \mathrm{~atm} \times \quad \frac{358 \mathrm{~K}}{291 \mathrm{~K}}=1.48 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Density (d) Calculations } \\
& n=m_{0} l \\
& \begin{array}{l|l|}
\hline d=\frac{M}{V}=\frac{P M}{R T} \\
\hline
\end{array} \\
& d=\frac{m}{V} \\
& \frac{P V}{V}=\frac{n \Omega T}{V} \\
& M=\frac{\text { mass }}{m_{0} l} \\
& \text { Molar Mass (M) of a Gaseous Substance } \quad M_{x}=\frac{m}{n} n=\frac{m}{M} \\
& \mathrm{M}=\frac{d R T}{P} \quad d \text { is the density of the gas in } \mathrm{g} / \mathrm{L} \\
& P=\frac{n R T}{V} \quad P=\begin{aligned}
& \frac{n R T}{V M}=P=\frac{d R T}{M T} \\
&=d
\end{aligned}
\end{aligned}
$$

(10) $2.10-\mathrm{L}$ vessel contains 4.65 g of a gas at 1.00 atm and 27.0 gC . What is the molar mass of
the gas?

$$
M=\frac{m_{0} l a r}{\text { mass }}=\frac{d R T}{P}=\frac{m R \neq}{P V}
$$

Gas Stoichiometry

What is the volume of CO_{2} produced at $37{ }^{\circ} \mathrm{C}$ and 1.00 atm when 5.60 g of glucose are used up in the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \quad 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

$$
\begin{aligned}
& V=\frac{n R T}{P}=\frac{0.187 \mathrm{motx} 0.0821 \frac{\mathrm{~L} \cdot \mathrm{ath}}{\mathrm{~mol} \cdot \mathrm{~K}} 310.15 \mathrm{~K}}{1.00 \mathrm{~atm}}=4.76 \mathrm{~L}
\end{aligned}
$$

Dalton's Law of Partial Pressures

V and T are constant

P_{1}

P_{2}

$$
P_{\text {total }}=\underbrace{P_{1}}_{\underbrace{P}_{26}} P_{2}
$$

Consider a case in which two gases, A and B , are in a container of volume V .

$$
\begin{array}{ll}
P_{\mathrm{A}}=\frac{n_{A} \mathrm{RT}}{V} & n_{\mathrm{A}} \text { is the number of moles of } \mathrm{A} \\
P_{\mathrm{B}}=\frac{n_{B} \mathrm{RT}}{V} & n_{\mathrm{B}} \text { is the number of moles of } \mathrm{B} \\
P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} & X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \quad X_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \\
P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{T}} & P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{T}}
\end{array}
$$

$$
\text { mole fraction }\left(X_{i}\right)=\quad \frac{n_{i}}{n_{T}}
$$

A sample of natural gas contains 8.24 moles of $\mathrm{CH}_{4}, 0.421$ moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ and 0.116 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$. If the total pressure of the gases is 1.37 atm , what is the partial pressure of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

$$
\begin{aligned}
& P_{C_{2} H_{6}} \frac{0.421}{8.24+0.421+0.116}=0.04797 \\
& P_{i}=X_{i} P_{\mathrm{T}} \quad P_{\mathrm{T}}=1.37 \mathrm{~atm}=0.04797(1.37) \\
& X_{\text {propane }}=\frac{0.0657 \mathrm{~atm}}{8.24+0.421+0.116}=0.0132 \\
& P_{\text {propane }}=0.0132 \times 1.37 \mathrm{~atm}=0.0181 \mathrm{~atm}
\end{aligned}
$$

Collecting a Gas over Water

Pressure of Water Vapor at Various Temperatures	
Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Water Vapor Pressure (mmHg)
0	4.58
5	6.54
10	9.21
15	12.79
20	17.54
25	23.76
30	31.82
35	42.18
40	55.32
45	71.88
50	92.51
55	118.04
60	149.38
65	187.54
70	233.7
75	289.1
80	355.1
85	433.6
90	525.76
95	633.90
100	760.00

TABLE 5.3
Vapor of Water and Temperature
Pressure of Water Vapor

Water
Vapor

Chemistry in Action:

Scuba Diving and the Gas Laws

Kinetic Molecular Theory of Gases

1. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume.
2. Gas molecules are in constant motion in random directions, and they frequently collide with one another. Collisions among molecules are perfectly elastic.
3. Gas molecules exert neither attractive nor repulsive forces on one another.
4. The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy

$$
\overline{\mathrm{KE}}=1 / 2 m u^{2}
$$

Kinetic theory of gases and ...

- Compressibility of Gases

- Boyle's Law
$P \propto$ collision rate with wall
Collision rate α number density
Number density $\alpha 1 / V$
$P \propto 1 / V$
- Charles'Law
$P \alpha$ collision rate with wall
Collision rate α average kinetic energy of gas molecules
Average kinetic energy αT
$P \propto T$

Kinetic theory of gases and ...

- Avogadro's Law
$P \alpha$ collision rate with wall
Collision rate α number density
Number density αn
$P \propto n$
- Dalton's Law of Partial Pressures

Molecules do not attract or repel one another
P exerted by one type of molecule is unaffected by the presence of another gas $P_{\text {total }}=\Sigma P_{\mathrm{i}}$

Apparatus for Studying Molecular Speed Distributiona

The distribution of speeds for nitrogen gas molecules at three different temperatures

$$
u_{\mathrm{mm}}=\sqrt{\frac{3 R T}{M}}
$$

The distribution of speeds of three different gases at the same temperature

Chemistry in Action: Super Cold Atoms

Maxwell velocity distribution of Rb atoms at about $1.7 \times 10^{-7} \mathrm{~K}$

Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties.

molecular path

Gas effusion is the is the process by which gas under pressure escapes from one compartment of a container to another by passing through a small opening.

Nickel forms a gaseous compound of the formula $\mathrm{Ni}(\mathrm{CO})_{\mathrm{x}}$ What is the value of x given that under the same conditions methane $\left(\mathrm{CH}_{4}\right)$ effuses 3.3 times faster than the compound?

$$
\begin{array}{ll}
\mathrm{r}_{1}=3.3 \mathrm{xr}_{2} & \mathrm{M}_{2}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2} \times M_{1}=(3.3)^{2} \times 16=174.2 \\
M_{1}=16 \mathrm{~g} / \mathrm{mol} & 58.7+x \cdot 28=174.2
\end{array}
$$

Deviations from Ideal Behavior

1 mole of ideal gas

$$
\begin{gathered}
P V=n R T \\
n=\frac{P V}{R T}=1.0
\end{gathered}
$$

Repulsive Forces

Attractive Forces

Effect of intermolecular forces on the pressure exerted by a gas.

TABLE 5.4

van der Waals Constants of Some Common Gases

Van der Waals equation nonideal gas

$\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$

$a \quad b$

Gas	$\left(\frac{\mathbf{a t m} \cdot \mathbf{L}^{2}}{\mathbf{m o l}^{2}}\right)$	$\left(\frac{\mathbf{L}}{\mathbf{m o l}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0266
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CO_{2}	3.59	0.0427
CH_{4}	2.25	0.0428
CCl_{4}	20.4	0.138
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

