W-GC General Chemistry 3/23
Idea Gas Law $=$

$$
P V=n R T
$$

Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$$
\frac{P_{1} V_{1}}{V_{2}}=\frac{P_{2} V_{2}}{V_{2}}
$$

1.) Gas 3.5 atm and $15 \mathrm{~L} \rightarrow V_{2} V_{2}$ transfer 20L container.

$$
P_{2}=\frac{P_{1} V_{1}}{V_{2}}
$$

Pressure?

$$
\frac{P V}{n R T}=\frac{n R T}{n R T}
$$

$\frac{(3.5 \mathrm{~atm})(15 y)}{20 \%}$
2.6 atm

$$
\frac{P V}{n R T}=1
$$

$$
\frac{P_{1} V_{1}}{n_{1} R T_{1}}=\frac{P_{2} V_{2}}{n_{2} R T_{2}} \quad \text { Boyle }
$$

$n, T=$ constant hold temp and amount constant

Boyle's Law

Constant temperature
Constant amount of gas

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154

mL? Ideal Gas Law

$$
\begin{gathered}
P \times V=\text { constant } \\
P_{1} \times V_{1}=P_{2} \times V_{2} \\
P_{1}=726 \mathrm{mmHg} \quad P_{2}=? \\
V_{1}=946 \mathrm{~mL} \quad V_{2}=154 \mathrm{~mL} \\
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{~mL}}{154 \mathrm{~mL}}=4460 \mathrm{mmHg}
\end{gathered}
$$

Variation in Gas Volume with Temperature at Constant Pressure

As T increases
V increases

Variation of Gas Volume with Temperature

 at Constant Pressure
As temp

Charles' \& GayLussac's Law
$V \propto T$
$V=$ constant $\mathrm{x} T$

$$
V_{1} / T_{1}=V_{2} / T_{2}
$$

$$
T(\mathrm{~K})=t\left({ }^{0} \mathrm{C}\right)+273.15
$$

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 if the pressure remains constant?

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}} \times \frac{V_{2}}{T_{2}}\left\{V_{1} T_{2}=V_{2} T_{1}\right\} \quad 125+273= \\
& 398 K \\
& C V_{1}=3.2 V_{1} \\
& \begin{array}{l}
V_{1}=3.20 \mathrm{~L} \\
T_{1}=398.15 \mathrm{~K} \quad V_{2}=1.54 \mathrm{~L}=\frac{(1.54 L)(398 \mathrm{~L})}{3} T_{2}=? \\
T_{1}=125\left({ }^{\circ} \mathrm{C}\right)+273.15(\mathrm{~K})=398.15 \mathrm{~K}
\end{array} \\
& T_{2}=\frac{V_{2} \times T_{1}}{V_{1}}=\frac{1.54 \mathrm{~L} \times 398.15 \mathrm{~K}}{3.20 \mathrm{~V}}=192 \mathrm{~K}
\end{aligned}
$$

$\frac{V_{1}}{T_{1}} \not \subset \frac{V_{2}}{T_{2}}$ Charle's Law/Gay-Lussac's

$$
\begin{aligned}
& V_{1}=700 \mathrm{~mL} \quad T_{1}=20^{\circ} \mathrm{C} \quad \frac{V_{1} T_{2}}{T_{1}}=\frac{V_{2} T_{1}}{T_{1}} \\
& T_{2}=100^{\circ} \mathrm{C} \quad V_{2}=? \quad V_{2}=\frac{V_{1} T_{2}}{T_{1}} \\
& V_{2}=\frac{(700 \mathrm{~mL})(373 \mathrm{~K})}{293 \mathrm{~K}}=891 \\
& T_{1}=20+273=293 \mathrm{~K} \quad 890 \mathrm{~mL} \\
& T_{2}=100+273=373 \mathrm{~K} \quad 0.89 \mathrm{~L}
\end{aligned}
$$

Avogadro's Law

$V \alpha$ number of moles (n)

$V=$ constant $\mathrm{x} n$
$V_{1} / n_{1}=V_{2} / n_{2}$

$$
\uparrow V_{1} n_{2}=V_{2} n_{1}
$$

Constant temperature Constant pressure

		\longrightarrow

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

1 mole $\mathrm{NH}_{3} \longrightarrow$ mole NO
At constant T and P
1 volume $\mathrm{NH}_{3} \rightarrow \square$ volume NO

Summary of Gas Laws

Boyle's Law

Increasing or decreasing the volume of a gas at a constant temperature

$$
\begin{gathered}
\text { Boyle's Law } \\
P=(n R T) \frac{1}{V} \quad n R T \text { is constant }
\end{gathered}
$$

Charles Law

Heating or cooling a gas at constant pressure

$$
\begin{gathered}
\text { Charles's Law } \\
V=\left(\frac{n R}{P}\right) T \quad \frac{n R}{P} \text { is constant }
\end{gathered}
$$

Heating or cooling a gas at constant volume

Higher temperature (Pressure increases)

$$
\begin{gathered}
\text { Charles's Law } \\
P=\left(\frac{n R}{V}\right) T \quad \frac{n R}{V} \text { is constant }
\end{gathered}
$$

Avogadro's Law

Dependence of volume on amount of gas at constant temperature and pressure

Avogadro's Law

$$
V=\left(\frac{R T}{P}\right) n \quad \frac{R T}{P} \text { is constant }
$$

Ideal Gas Equation

Boyle's law: $\mathrm{P} \alpha \frac{1}{V}($ at constant n and $T)$
Charles' law: $V \propto T$ (at constant n and P)
Avogadro's law: V αn (at constant P and T)
$V \propto \frac{n T}{P}$
$V=$ constant $\mathrm{x} \quad \frac{n T}{P}=R \quad \frac{n T}{P} \quad R$ is the gas constant

The conditions $0{ }^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L .

$$
\begin{aligned}
& P V=n R T \\
& R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}
\end{aligned}
$$

$$
R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K})
$$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
& T=0) \mathrm{C}=273.15 \mathrm{~K} \\
& P=1 \mathrm{~atm}
\end{aligned}
$$

$$
P V=n R T
$$

$$
V=\frac{n R T}{P}
$$

$$
n=49.8 \mathrm{~g} \mathrm{x} \quad \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
$$

$$
V=\frac{1.37 \text { mot } x 0.0821 \frac{\text { Leat }}{\text { mot }} 273.15 \mathrm{~K} /}{1 \text { atmr }}
$$

$$
V=30.7 \mathrm{~L}
$$

Argon is an inert gas used in lightbulbs to raporization of the filament. A certain lightbulb containing argon at 1.20 atm and $18{ }^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. What is the final pressure of argon in the lightbulb (in atm)?

