W-GC General Chemistry $3 / 16$

$$
F=A R T
$$

$R=$ universal gas
constant
$8.14 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}}$
I deal Gas

Ideal Gas Law

$$
\underline{P}=\underset{\mathrm{Pressure}}{\mathrm{~atm}}
$$

$$
P V=n R T
$$

$$
1 \mathrm{~atm}=760 \mathrm{tor}
$$ 760 mmHg

$\underline{n}=\#$ of moles 101.3 kPa
$K=$ Universal Gas
Constant

$$
V=\text { Volume }
$$

$I=$ Absolute Temperature (K)

$$
P V=n C T
$$

BHO^{41009}
Ip $\vee \downarrow$ Pressure Volume inversely related

Gases

Chapter 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Elements that exist as gases at $25^{\circ} \mathrm{C}$ and 1 atmosphere

TABLE 5.1 Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

Elements

H_{2} (molecular hydrogen)
N_{2} (molecular nitrogen)
O_{2} (molecular oxygen)
O_{3} (ozone)
F_{2} (molecular fluorine)
Cl_{2} (molecular chlorine)
He (helium)
Ne (neon)
Ar (argon)
Kr (krypton)
Xe (xenon)
Rn (radon)

Compounds

HF (hydrogen fluoride)
HCl (hydrogen chloride)
HBr (hydrogen bromide)
HI (hydrogen iodide)
CO (carbon monoxide)
CO_{2} (carbon dioxide)
NH_{3} (ammonia)
NO (nitric oxide)
NO_{2} (nitrogen dioxide)
$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
SO_{2} (sulfur dioxide)
$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
HCN (hydrogen cyanide)*

[^0]
Physical Characteristics of Gases

- Gases assume the volume and shape of their containers.
- Gases are the most compressible state of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.

Pressure $=\frac{\text { Force }}{\text { Area }}$

(force $=$ mass x acceleration $)$

Units of Pressure
$1 \operatorname{pascal}(\mathrm{~Pa})=1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$

$$
101.3 \mathrm{kPa}
$$

Manometers Used to Measure Gas Pressures

closed-tube

open-tube

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

As $P(\mathrm{~h})$ increases
V decreases

Boyle's Law

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 $m L ? P_{2}$

$$
\left[P_{1} \times V_{1}=P_{2} \times V_{2}\right]
$$

$$
\begin{array}{ll}
P_{1}=726 \mathrm{mmHg} & P_{2}=? \\
V_{1}=946 \mathrm{~mL} & V_{2}=154 \mathrm{~mL}
\end{array}
$$

$$
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{~mJ}}{154 \mathrm{~mL}}=4460 \mathrm{mmHg}
$$

[^0]: *The boiling point of HCN is $26^{\circ} \mathrm{C}$, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

