General Chemistry W-6C 3/16 F = ART R= universal gas constant 8.14 atm.L mol·K I deal Gas Lignid hent Sas vaporire lideal gases - particles so - particles for the -vibratimal for apart they apart, but still influence each - no translational do not movement influence other. , 1 each other. - vibrational am -Linse some translational -vibrational, more ment a lot of - less dense translational movement - least dense

Ideal Gas Law P = Pressure PV=nR1 1 atm = 760 torr 760 mmHg M= # of moles 101.3 k/a V = Volume R - Universal Gas Constant 8.314 T = Absolute Temperature (K) PV= nCT Ballown Pressure Volume inverse. related P=

Gases

Chapter 5

Elements that exist as gases at 25°C and 1 atmosphere STP Standard
Temperature and
Pressure 273
25 1A 8A Н He 2A3A 4A5A 6A Li В \mathbf{C} N F Be 0 Ne Al Si P \mathbf{S} Cl Mg Na Ar 3B 4B5B 6B 7B 8B 2BK Ca Sc Ti \mathbf{V} Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Y Rb Sr Zr Nb Mo Tc Ru Rh Pd Cd In Sn Sb Te I Xe Ag Hf \mathbf{W} TICs Ba La Ta Re Os Ir Pt Au Hg Pb Bi Po At Rn \mathbf{Fr} Rf Db SgBh Hs Mt Ds Rg Ra Ac

TABLE 5.1 Some Substances Found as Gases at 1 atm and 25°C

Elements	Compounds	
H ₂ (molecular hydrogen)	HF (hydrogen fluoride)	
N ₂ (molecular nitrogen)	HCl (hydrogen chloride)	
O ₂ (molecular oxygen)	HBr (hydrogen bromide)	
O ₃ (ozone)	HI (hydrogen iodide)	
F ₂ (molecular fluorine)	CO (carbon monoxide)	
Cl ₂ (molecular chlorine)	CO ₂ (carbon dioxide)	
He (helium)	NH ₃ (ammonia)	
Ne (neon)	NO (nitric oxide)	
Ar (argon)	NO ₂ (nitrogen dioxide)	
Kr (krypton)	N ₂ O (nitrous oxide)	
Xe (xenon)	SO ₂ (sulfur dioxide)	
Rn (radon)	H ₂ S (hydrogen sulfide)	
	HCN (hydrogen cyanide)*	

^{*}The boiling point of HCN is 26°C, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

Physical Characteristics of Gases

- Gases assume the volume and shape of their containers.
- Gases are the most compressible state of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.

NO₂ gas

$$Pressure = \frac{Force}{Area}$$

(force = mass x acceleration)

Units of Pressure

1 pascal (Pa) = 1 N/m²
1 atm =
$$\frac{760 \text{ mmHg}}{1 \text{ atm}} = \frac{760 \text{ torr}}{1 \text{ of } 3}$$

Manometers Used to Measure Gas Pressures

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Boyle's Law

 $P \times V = constant$

$$P_1 \times V_1 = P_2 \times V_2$$

inversely

Constant temperature
Constant amount of gas

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154

$$Px V = constant$$

$$P_1 \times V_1 = P_2 \times V_2$$

$$4459 \text{ mm/Hz}$$

$$P_{2} = ?$$

$$P_1 = 726 \text{ mmHg}$$

$$P_2 - I$$

$$V_1 = 946 \text{ mL}$$

$$V_2 = 154 \text{ mL}$$

$$P_2 = \frac{P_1 \times V_1}{V_2} = \frac{726 \text{ mmHg x 946 mL}}{154 \text{ mL}} = \frac{4460 \text{ mmHg}}{154 \text{ mL}}$$