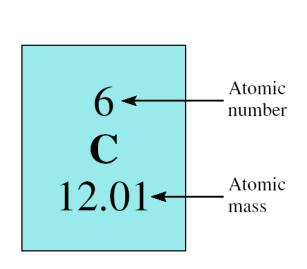
Mass Relationships in Chemical Reactions

Chapter 3

Micro World atoms & molecules Macro World grams

Atomic mass is the mass of an atom in atomic mass units (amu)


By definition: 1 atom ¹²C "weighs" 12 amu

On this scale

¹H = 1.008 amu

 $^{16}O = 16.00 \text{ amu}$

The average atomic mass is the weighted average of all of the naturally occurring isotopes of the element.

Naturally occurring lithium is:

7.42% ⁶Li (6.015 amu)

92.58% 7Li (7.016 amu)

Average atomic mass of lithium:

$$\frac{7.42 \times 6.015 + 92.58 \times 7.016}{100} = 6.941 \text{ amu}$$

1 1 A H Hydrogen 1.008	2 2A				10 — Ne Neon 20.18 -		Atomic n Atomic m					13 3A	14 4A	15 5A	16 6A	17 7A	18 8A 2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012		— А\	/era	ge a	ıtom	ic m	าสรร	(6.9	941)		5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.88	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.1	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In Indium 114.8	50 Sn Tin 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	53 I Iodine 126.9	54 Xe Xenon 131.3
55 Cs Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	72 Hf Hafnium 178.5	73 Ta Tantalum 180.9	74 W Tungsten 183.9	75 Re Rhenium 186.2	76 Os Osmium 190.2	77 Ir Iridium 192.2	78 Pt Platinum 195.1	79 Au Gold 197.0	80 Hg Mercury 200.6	81 Tl Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	84 Po Polonium (210)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (257)	105 Db Dubnium (260)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	110 Ds Darmstadtium (269)	111 Rg Roentgenium (272)	112	113	114	115	116	(117)	118
Metals Metalloids			58 Ce Cerium 140.1	59 Pr Praseodymium 140.9	60 Nd Neodymium 144.2	61 Pm Promethium (147)	62 Sm Samarium 150.4	63 Eu Europium 152.0	64 Gd Gadolinium 157.3	65 Tb Terbium 158.9	66 Dy Dysprosium 162.5	67 Ho Holmium 164.9	68 Er Erbium 167.3	69 Tm Thulium 168.9	70 Yb Ytterbium 173.0	71 Lu Lutetium 175.0	

90 **Th**

Thorium

232.0

Nonmetals

91

Pa

Protactinium

(231)

92 **U**

Uranium

238.0

93

Np Neptunium

(237)

94

Pu

Plutonium

(242)

95

Am

Americium

(243)

96

Cm

Curium

(247)

98

Cf

Californium

(249)

97

Bk

Berkelium

(247)

100

Fm

Fermium

(253)

99

Es

Einsteinium

(254)

101

Md

Mendelevium

(256)

102

No

Nobelium

(254)

103


Lr

Lawrencium

(257)

The Mole (mol): A unit to count numbers of particles

Dozen = 12

Pair = 2

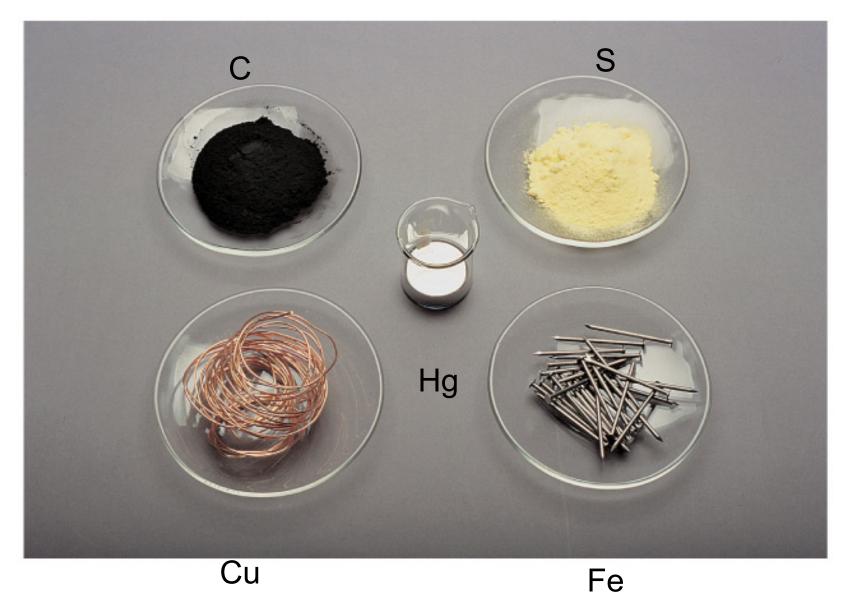
The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

1 mol =
$$N_A$$
 = 6.0221367 x 10²³

Avogadro's number (N_A)

Molar mass is the mass of 1 mole of shoes marbles

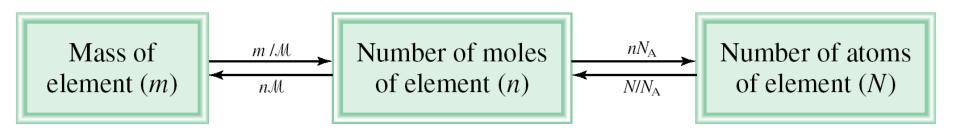
eggs shoes in grams marbles atoms


1 mole ¹²C atoms = 6.022 x 10²³ atoms = 12.00 g 1 ¹²C atom = 12.00 amu

1 mole 12 C atoms = 12.00 g 12 C

1 mole lithium atoms = 6.941 g of Li

For any element atomic mass (amu) = molar mass (grams)


One Mole of:

8

$$\frac{1^{12}\text{C atom}}{12.00 \text{ amu}} \times \frac{12.00 \text{ g}}{6.022 \times 10^{23}} = \frac{1.66 \times 10^{-24} \text{ g}}{1 \text{ amu}}$$

1 amu = $1.66 \times 10^{-24} \, \text{g}$ or $1 \, \text{g} = 6.022 \times 10^{23} \, \text{amu}$

_M = molar mass in g/mol

 N_A = Avogadro's number

How many atoms are in 0.551 g of potassium (K)?

1 mol K = 39.10 g K
1 mol K =
$$6.022 \times 10^{23}$$
 atoms K

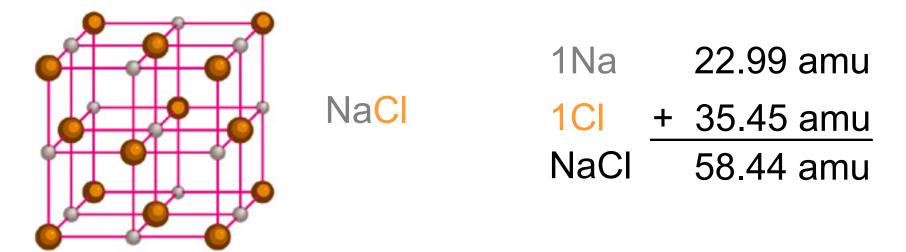
$$0.551 \text{ g K x} \frac{1 \text{ mol K}}{39.10 \text{ g K}} \times \frac{6.022 \text{ x } 10^{23} \text{ atoms K}}{1 \text{ mol K}} =$$

8.49 x 10²¹ atoms K

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule molecular mass (amu) = molar mass (grams)

1 molecule
$$SO_2 = 64.07$$
 amu
1 mole $SO_2 = 64.07$ g SO_2


How many H atoms are in 72.5 g of C₃H₈O?

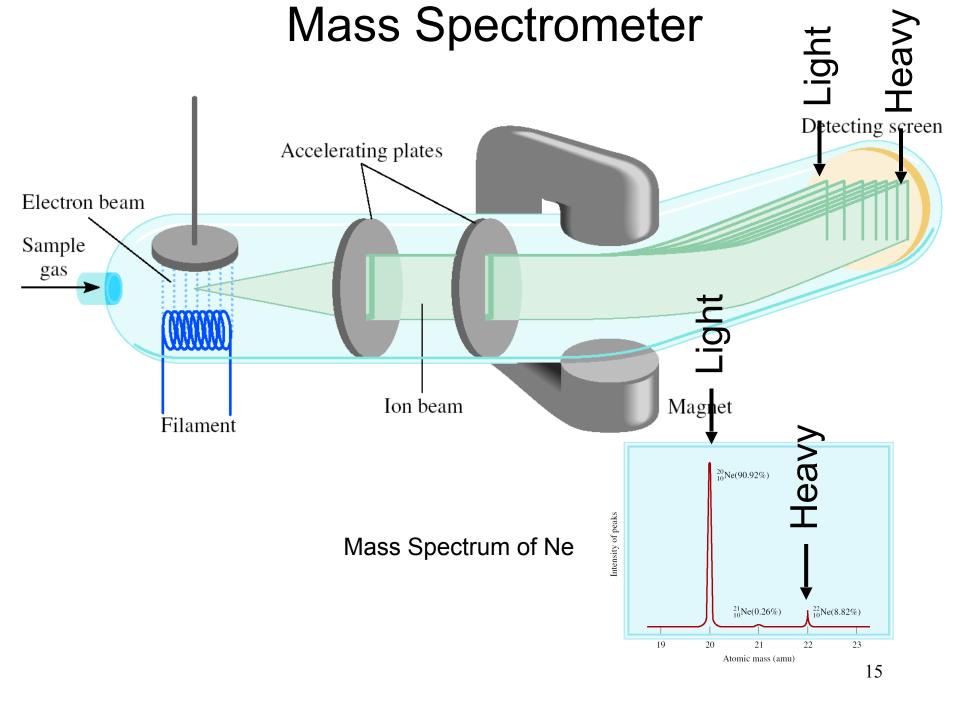
1 mol
$$C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$$

1 mol C_3H_8O molecules = 8 mol H atoms
1 mol H = 6.022 x 10^{23} atoms H

72.5 g C₃H₈O x
$$\frac{1 \text{ mol } C_3 H_8 O}{60 \text{ g } C_3 H_8 O}$$
 x $\frac{8 \text{ mol H atoms}}{1 \text{ mol } C_3 H_8 O}$ x $\frac{6.022 \text{ x } 10^{23} \text{ H atoms}}{1 \text{ mol H atoms}} =$

5.82 x 10²⁴ atoms H

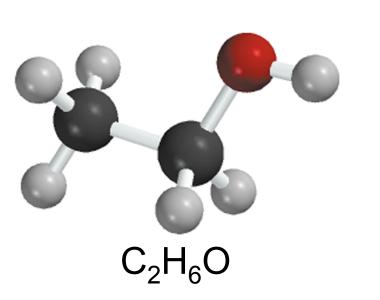
Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.


For any ionic compound formula mass (amu) = molar mass (grams)

1 formula unit NaCl = 58.44 amu 1 mole NaCl = 58.44 g NaCl

What is the formula mass of $Ca_3(PO_4)_2$?

```
1 formula unit of Ca_3(PO_4)_2
```


```
3 Ca 3 x 40.08
2 P 2 x 30.97
8 O + 8 x 16.00
310.18 amu
```


Percent composition of an element in a compound =

n x molar mass of element x 100% molar mass of compound

n is the number of moles of the element in 1 mole of the compound

%C =
$$\frac{2 \times (12.01 \text{ g})}{46.07 \text{ g}} \times 100\% = 52.14\%$$

%H = $\frac{6 \times (1.008 \text{ g})}{46.07 \text{ g}} \times 100\% = 13.13\%$
%O = $\frac{1 \times (16.00 \text{ g})}{46.07 \text{ g}} \times 100\% = 34.73\%$
 $52.14\% + 13.13\% + 34.73\% = 100.0\%$

Percent Composition and Empirical Formulas

Mass percent

Convert to grams and divide by molar mass

Determine the empirical formula of a compound that has the following percent composition by mass: K 24.75, Mn 34.77, O 40.51 percent.

Moles of each element

Divide by the smallest number of moles

Mole ratios of elements

Change to integer subscripts


Empirical formula

$$n_{\rm K} = 24.75 \, \text{g K} \times \frac{1 \, \text{mol K}}{39.10 \, \text{g K}} = 0.6330 \, \text{mol K}$$

= 34.77 g Mn
$$\times \frac{1 \text{ mol Mn}}{54.94 \text{ g Mn}} = 0.6329 \text{ mol Mn}$$

$$n_{\rm O} = 40.51 \text{ g O x} \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 2.532 \text{ mol O}$$

Percent Composition and Empirical Formulas

$$n_{\rm K}$$
 = 0.6330, $n_{\rm Mn}$ = 0.6329, $n_{\rm O}$ = 2.532

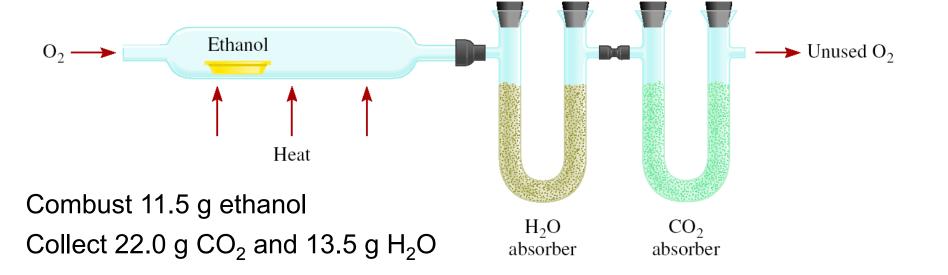
Convert to grams and divide by molar mass

Moles of each element

Divide by the smallest number of moles

Mole ratios of elements

Change to integer subscripts


Empirical formula

$$K: \frac{0.6330}{0.6329} \approx 1.0$$

Mn:
$$\frac{0.6329}{0.6329}$$
 = 1.0

O:
$$\frac{2.532}{0.6329} \approx 4.0$$

KMnO₄

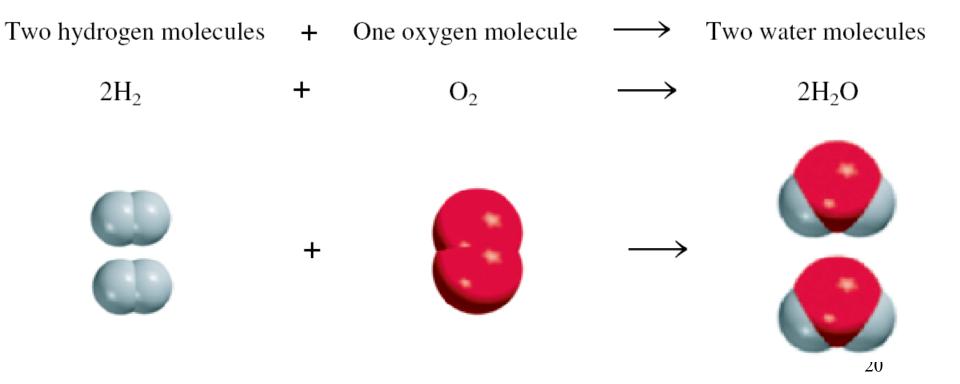
$$g CO_2 \longrightarrow mol CO_2 \longrightarrow mol C \longrightarrow g C$$
 6.0 $g C = 0.5 mol C$

$$g H_2O \longrightarrow mol H_2O \longrightarrow mol H \longrightarrow g H$$
 1.5 $g H = 1.5 mol H$

g of
$$O = g$$
 of sample – $(g \text{ of } C + g \text{ of } H)$ 4.0 g $O = 0.25 \text{ mol } O$

Empirical formula $C_{0.5}H_{1.5}O_{0.25}$

Divide by smallest subscript (0.25)


Empirical formula C₂H₆O

A process in which one or more substances is changed into one or more new substances is a *chemical reaction*

A *chemical equation* uses chemical symbols to show what happens during a chemical reaction

reactants ---- products

3 ways of representing the reaction of H₂ with O₂ to form H₂O

How to "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO

2 moles Mg + 1 mole O₂ makes 2 moles MgO

48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

NOT

2 grams Mg + 1 gram O₂ makes 2 g MgO

1. Write the **correct** formula(s) for the reactants on the left side and the **correct** formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$

2. Change the numbers in front of the formulas (*coefficients*) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.

$$2C_2H_6$$
 NOT C_4H_{12}

3. Start by balancing those elements that appear in only one reactant and one product.

$$C_{2}H_{6} + O_{2} \longrightarrow CO_{2} + H_{2}O \quad \text{start with C or H but not O}$$

$$2 \text{ carbon } \quad 1 \text{ carbon } \quad \text{multiply CO}_{2} \text{ by 2}$$

$$O_{2}H_{6} + O_{2} \longrightarrow 2CO_{2} + H_{2}O$$

$$O_{1} \longrightarrow O_{2}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{2}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{3}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{4}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{5}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{2}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{3}H_{4}O$$

$$O_{2}H_{6} + O_{2} \longrightarrow O_{2}H_{2}O$$

$$O_{3}H_{4}O$$

$$O_{4}H_{5}O$$

$$O_{5}H_{6}O$$

$$O_{7}H_{6}O$$

$$O_{7}H_{7}O$$

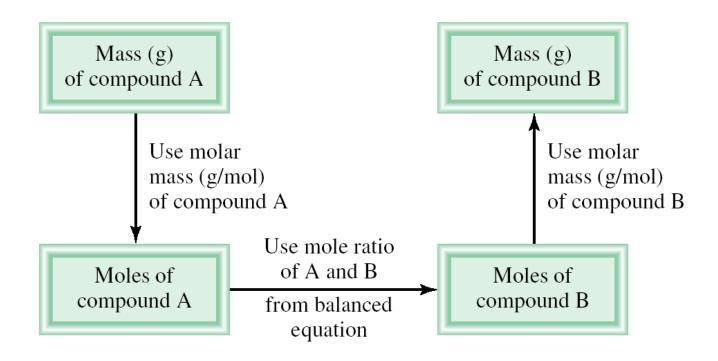
$$O_{7}H_$$

4. Balance those elements that appear in two or more reactants or products.

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O$$
 multiply O_2 by $\frac{7}{2}$

2 oxygen 4 oxygen + 3 oxygen = 7 oxygen on left (2x2) (3x1) on right

 $C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$ remove fraction multiply both sides by 2


 $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

 $4 C (2 \times 2) \qquad 4 C$
 $12 H (2 \times 6) \qquad 12 H (6 \times 2)$
 $14 O (7 \times 2) \qquad 14 O (4 \times 2 + 6)$

Reactants	Products
4 C	4 C
12 H	12 H
14 O	14 O

Amounts of Reactants and Products

- 1. Write balanced chemical equation
- 2. Convert quantities of known substances into moles
- 3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity
- 4. Convert moles of sought quantity into desired units

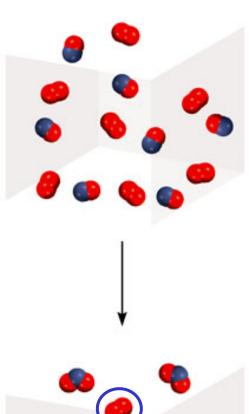
Methanol burns in air according to the equation

$$2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?

grams
$$CH_3OH \longrightarrow moles CH_3OH \longrightarrow moles H_2O \longrightarrow grams H_2O$$

molar mass coefficients molar mass CH₃OH chemical equation H₂O


209 g CH₃OH x
$$\frac{1 \text{ mol CH}_3\text{OH}}{32.0 \text{ g CH}_3\text{OH}}$$
 x $\frac{4 \text{ mol H}_2\text{O}}{2 \text{ mol CH}_3\text{OH}}$ x $\frac{18.0 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ =

Reactant used up first in the reaction.

$$2NO + O_2 \longrightarrow 2NO_2$$

NO is the limiting reagent

O₂ is the excess reagent

After reaction is complete

In one process, 124 g of Al are reacted with 601 g of Fe₂O₃

$$2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$$

Calculate the mass of Al₂O₃ formed.

g Al
$$\longrightarrow$$
 mol Al \longrightarrow mol Fe₂O₃ needed \longrightarrow g Fe₂O₃ needed OR

 $g Fe_2O_3 \longrightarrow mol Fe_2O_3 \longrightarrow mol Al needed \longrightarrow g Al needed$

$$124 \text{ gAt x} \quad \frac{1 \text{ mol Al}}{27.0 \text{ gAl}} \text{ x} \quad \frac{1 \text{ mol Fe}_2\text{O}_3}{2 \text{ mol Al}} \text{ x} \quad \frac{160. \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3} = 367 \text{ g Fe}_2\text{O}_3$$

Start with 124 g Al \longrightarrow need 367 g Fe₂O₃

Have more Fe₂O₃ (601 g) so Al is limiting reagent

Use limiting reagent (AI) to calculate amount of product that can be formed.

g Al
$$\longrightarrow$$
 mol Al \longrightarrow mol Al₂O₃ \longrightarrow g Al₂O₃

$$2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$$

$$124 \text{ g At } \times \frac{1 \text{ mol At}}{27.0 \text{ g Al}} \times \frac{1 \text{ mol At}_2 O_3}{2 \text{ mol Al}} \times \frac{102. \text{ g Al}_2 O_3}{1 \text{ mol At}_2 O_3} = 234 \text{ g Al}_2 O_3$$

At this point, all the Al is consumed and Fe_2O_3 remains in excess.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

% Yield =
$$\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%$$

Chemistry In Action: Chemical Fertilizers

Plants need: N, P, K, Ca, S, & Mg

$$3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$$

$$NH_3(aq) + HNO_3(aq) \longrightarrow NH_4NO_3(aq)$$

fluorapatite
$$2Ca_5(PO_4)_3F(s) + 7H_2SO_4(aq) \longrightarrow$$
 $3Ca(H_2PO_4)_2(aq) + 7CaSO_4(aq) + 2HF(g)$

