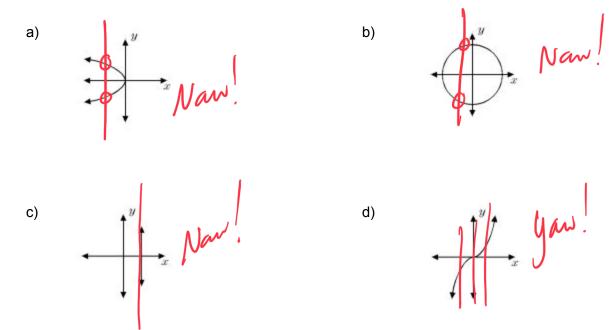

Week 14 12/13 W-AZ Algebra 2 $y \stackrel{?}{<} \frac{2}{5} \times -3$ ess-dans Ly-int y=mx+b 1.) Graph y-int 2.) Slope Zup Sright (0,0)3 $y < \frac{2}{5} \times$ 0 < 26 False 4x + 12y ≥ 24 υρ $4x + by \geq 24$ -4x Fill -4x 12y 2-4x+24 12 12 12 $\frac{2}{3}y^2 - \frac{1}{3}X + 2$ $4x + 12y \ge 24$ 4(0)+12(0)=24 0 2 24

Algebra 2 Chapter 2 Pre-Test


1.) (8 pts total, 4 pts each) For the following function, determine f(3) and f(-2).

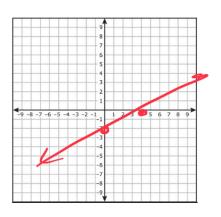
For what value(s) of x would $f(x) \cdot g(x)$ <u>not</u> be a function, if any.

3.) (8 pts total, 2 pts each) Which of the following graphs represents a function? Write either "function" or "not a function".

4.) (8 pts total, 4 pts each) Write the equation for the line formed by each slope and point. Include <u>both</u> slope-intercept and point-slope forms.

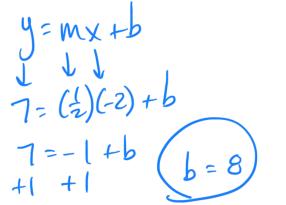
(a)
$$(-2, 4), m = -3$$

 $y = m x + b$
 $y = -3x - 2$
 $y = -2x - 2$
 $y = -2x - 2$

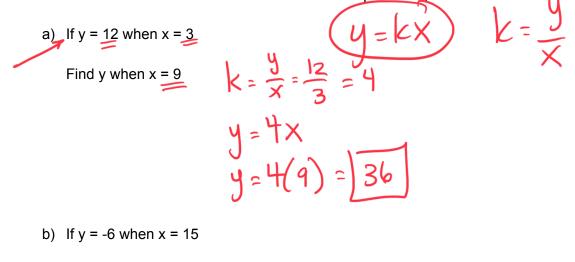

5.) (8 pts total, 4 pts each) Find the slope and intercepts for each of the following lines:

(a)
$$4x + 6y = -12$$
 $4x + 6y = -12$
 $y - int^{K=0}$ $6y = -2$
 $y - int^{K=0}$ $y = -4x$ $-4x$
 $y = -2$ $6y = -4x - 12$
 $y - int = -3$
 $y - int = -2$
 $x - int = -4x - 12$
 $y - int = -2$
 $y - int = -2$
 $y - int = -2$
 $x - int = -2$
 $y - int = -2$
 $x - int = -2$
 $y - 2$
 $y - 3$
 $y - 3$

- 6.) (8 pts total, 4 pts each) Find the slope for each of the following:
 - a) (-5, 3) and (7, -1) $S |_{ope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{7 - (-5)} = \frac{-1 - 3}{7 + 5} = \frac{-4}{12} = \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$
 - b) (-2, 6) and (4, -9)

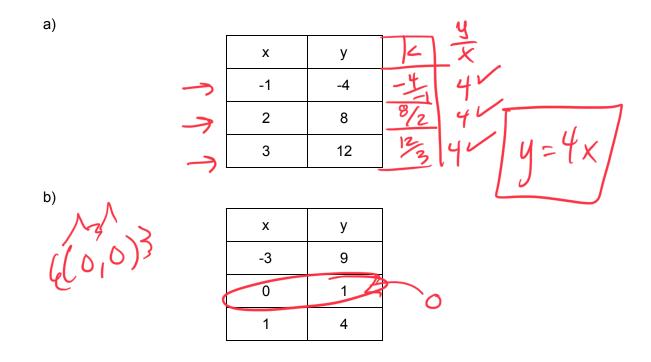

7.) (8 pts total, 4 pts each) Graph each of the following equations:

X = a) 5x - 10y = 20b) 16x + 8y = 48

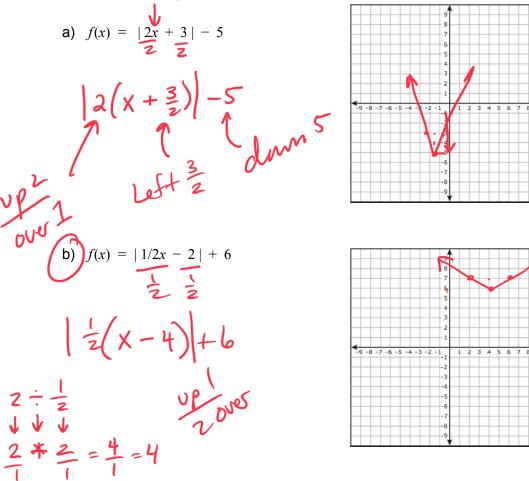


	— 9 T	-	-	-	+	+		
	- 8	-	-	+	+	+		
	- 7			+	+	+		
	- 6	-		-	-	+		-
	- 5	-		-	-	+		
	- 4	-	-	-	-	-		
	- 3	_		_	_	-		
	-2	_			1			
			1.1		1	1		
	$\rightarrow 1$							
	- 1							
-8 -7 -6 -5 -4 -3 -2	-1	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -1 -2	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -1 -2 -3	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -2 -3 -4	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -2 -3 -4 -5	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -2 -3 -4 -5 -6	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -2 -3 -4 -5	1	2 3	4	5	6	7 8	3 9
-8 -7 -6 -5 -4 -3 -2	-1 -2 -3 -4 -5 -6	1	2 3	4	5	6	7 8	3 9

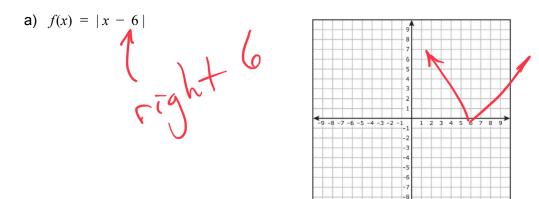
- 8.) (8 pts total, 4 pts each) Determine the equation for each of the following:
 - a) Write the equation for a line through (-2, 7) and <u>perpendicular</u> to y = -2x + 5. Given slope: -2 perpendicular to y = -2x + 5. Needed slope: $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Given slope $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 - b) Write the equation for a line parallel to y = 3x 2 that passes through (1, -3)

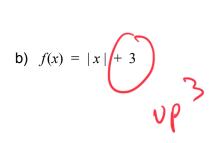


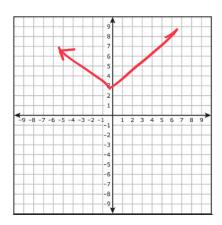
9.) (8 pts total, 4 pts each) Each of the following depicts a direct variation function. For each, find the constant of variation and show the relationship in an equation.

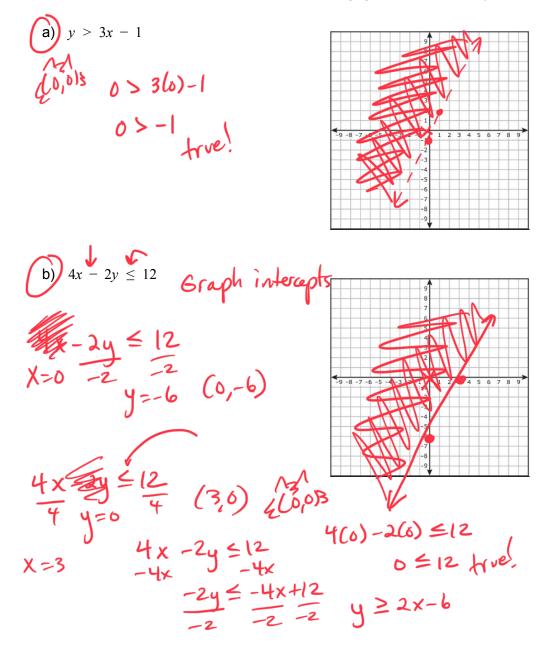


- 10.) (8 pts total, 4 pts each) For each of the following, determine whether y varies directly
 - with x. If so, find the constant of variation and write the equation.


Find x when y = 2




11.) (6 pts total, 3 pts each) For each of the following, find the vertex of the absolute value function. Then graph the function.


12.) (6 pts total, 3 pts each) For each of the following, find the vertex of the absolute value function. Then graph the function.

13.) (8 pts total, 4 pts each) For each of the following, graph the inequality.

7