W-A1 Algebra 1 Week $12 \quad 11 / 29$

$$
\frac{\text { T-Rex Peep }}{o b_{j} \# 1} \text { travels } \frac{50 \mathrm{mi} / \mathrm{w}}{\mathrm{mi} / \mathrm{w}}
$$

Chewed up Jumbo
pencil
traveling $\frac{70 \mathrm{mi} / \mathrm{s}}{\mathrm{mi} / \mathrm{w}}$
leaves 5 hours) later in the $\frac{\text { same }}{\text { same/opposite }}$ direction. How long until boom boon?
1.) Find Head start $5 \mathrm{hr}_{r} * 50 \mathrm{mi} / \mathrm{w}=250 \mathrm{mi}$
2.) Find Relative Rate obj 2 rate -obj 1 rate

$$
20 \mathrm{mi} / \mathrm{w}
$$

$$
70 \mathrm{mi} / \mathrm{hr}-50 \mathrm{mi} / \mathrm{w}
$$

3.) $\frac{\text { Head start }}{\text { relative rate }}=\frac{250}{20}=12.5 \mathrm{hrs}$

Antique, slightly
$\frac{\text { arthritic table }}{\circ \mathrm{bj}^{\#} 1}$ travels $\frac{120 \mathrm{mi} / \mathrm{h}}{\mathrm{mi} / \mathrm{w}}$

$$
\frac{\text { Garfield McDonald's }}{\text { cup }} \text { traveling } \frac{150 \mathrm{mi} / \mathrm{w}}{\mathrm{mi} / \mathrm{w}}
$$

leaves 2 hour (s) later in the $\frac{\text { same }}{\text { same/opposite }}$ direction. How long until boom boom?
1.) Head start $(2 \mathrm{hr})(120 \mathrm{mi} / \mathrm{m})=240 \mathrm{mi}$
2.) Relative Rate obj2-obj1

$$
\begin{aligned}
& o b j 2-\Delta b_{j} I \\
& 150 \mathrm{mi} / \mathrm{w}-120 \mathrm{mi} / \mathrm{w}=30 \mathrm{mi} / \mathrm{w}
\end{aligned}
$$

3.) $\frac{\text { Head start }}{\text { Relative Rete }}=\frac{240}{30}=8$ hrs
white squirrel with
$\frac{\text { a santa hat and }}{0 \mathrm{bj}^{\# 1} \text { eye patch }} \frac{50 \mathrm{mi} / \mathrm{w}}{\mathrm{mi} / \mathrm{w}}$
Box of Pac N Mac traveling $\frac{60 \mathrm{mi} / \mathrm{w}}{\mathrm{mi} / \mathrm{w}}$
leaves at the same time in opposite directions.
a) How for away would they be after 5 hours?
Relative Rate same direction \rightarrow subtract different direction \rightarrow add

Relative rate $50 \mathrm{mi} / \mathrm{hr}+60 \mathrm{mi} / \mathrm{w}=110 \mathrm{mi} / \mathrm{r}$

$$
(5 \mathrm{hrs})(110 \mathrm{mi} / \mathrm{w})=550 \mathrm{mi}
$$

b) How long until the objects are 1000 miles apart?

$$
\frac{\text { miles a part }}{\text { relative rate }}=\frac{1000 \mathrm{mi}}{110 \mathrm{mi} / \mathrm{w}}=9.09=9.1 \mathrm{hrs}
$$

Algebra 1

Chapter 2 Practice Test
1.) (5 pts each) Solving One Step Equations (2-1) Solve each equation.
a) $b+8=21$

c) $6 a=72$

$$
\begin{aligned}
&\text { d) })\binom{(3)}{8}=(5)^{8} \\
& y=40
\end{aligned}
$$

e) $-15 t=45$
2.) (5 pts each) Solving Two-Step Equations (2-2) Solve each equation.

$$
\text { (a) } \begin{aligned}
3 x+8 & =44 \\
-8 & -8 \\
\frac{3 x}{3} & =\frac{36}{3} \quad x=12
\end{aligned}
$$

b) $\frac{b}{5}-4=-2$

- $+4+4$
$5\left(\frac{b}{5}\right)=(2) 5$
$b=10$
c) $15=6 x-9$
d) $8=\frac{a}{-7}+12$
3.) (5 pts each) Solving Multi-Step Equations (2-3) Solve each equation.
a) $8 c+7(2 c-3)=23$

b) $3(4+x)-(2 x+3)=14$

$$
12+3 x-2 x-3=14
$$

$$
x+9=14 \quad x=5
$$

(c)

$$
9 y-6 y+10=8
$$

$$
\begin{array}{l|}
3 y+10=8 \\
-10-10
\end{array} \quad y=\frac{-2}{3}
$$

(d) $\frac{c+5}{2}=11 \quad \frac{3 y}{3}=\frac{-2}{3}$
$\frac{(c+5)}{2} \quad \frac{c}{2}+\frac{5}{2}=11$

$$
\begin{gathered}
2\left(\frac{c+5}{2}\right)=(11)^{2} \quad C=17 \\
c+5=22 \\
-5=-5
\end{gathered}
$$

4.) (5 pts each) Equations with Variables on Both Sides (2-4) Solve each equation.
(a) $\begin{array}{cc}6 x-25= & \begin{array}{l}\downarrow \\ +2 x\end{array} \\ +2 x \\ +2 x\end{array}$

$$
\begin{aligned}
8 x-25 & =7 \\
+25 & +25 \\
\frac{8 x}{8} & =\frac{32}{8} \quad x=4
\end{aligned}
$$

(b))

$$
\begin{aligned}
4 a-8 & =7 a-35 \\
+35 & +35 \\
4 a+27 & =7 a \quad \frac{27}{3}=\frac{3 a}{3} \quad a=9 \\
-4 a \quad & -4 a \quad a
\end{aligned}
$$

c) $9 b+15=11 b+27$
d) $8(3 y-2)=4(5 y+4)$
5.) (5 pts each) Equations and Problem Solving (2-5) Write and solve an equation for each situation.
a) A man stole Nate's burrito and drove away at $50 \mathrm{mi} / \mathrm{hr}$. Hangry, Nate took off on foot in the same direction a half an hour later. If Nate ran at $60 \mathrm{mi} / \mathrm{hr}$, how long will it take for him to catch the nefarious burrito burglar?
\rightarrow Head start: $50 \mathrm{mi} / \mathrm{hr} * 0.5 \mathrm{hr}=25$ miles
\rightarrow Relative Rate: $60 \mathrm{mr} / \mathrm{w}-50 \mathrm{mi} / \mathrm{wr}=10 \mathrm{mi} / \mathrm{w}$

$$
\frac{\text { Head start }}{\text { relative rate }}=\frac{25 \mathrm{mil}}{10 \mathrm{mi} / \mathrm{w}}=
$$

b) A train leaves the station at 12 pm traveling at $120 \mathrm{mi} / \mathrm{hr}$. A second train left from the same station at 2 pm traveling $80 \mathrm{mi} / \mathrm{hr}$ in the opposite direction. How long until the trains are 840 miles apart?

c) Usain Bolt ran an iron man event at a respectable $12 \mathrm{mi} / \mathrm{hr}$. Nate, feeling generous, gave him an hour head start. If Nate ran $18 \mathrm{mi} / \mathrm{hr}$, how long until he caught up with Usain Bolt?

