Week 12 11/29 W-A1 Algebra 1 T-Rex Peep travels 50 mi/w mi/w Chewed up Jumbo traveling 70 mi/r leaves 5 hours) later in the same/opposite direction. How long until boom boom? 1.) Find Head start shr * 50 mi/w = 250 mi 2) Find Relative Rate obj 2 rate - obj 1 rate

20 mi/hr - 50mi/hr - 50mi/hr 7.) Head start = 250 = 12.5 hrs

Antique, slightly

wthritic table travels 120 mi/w

obj # 1

mi/w Garfield McDonald's traveling 150 mi/w leaves 2 hours) later in the same same/opposite direction. How long until boom boom? 1) Head start (2hr) (120mi/hr) = 240 mi 2.) Relative Rate obj2 - obj1 150mi/w - 120mi/w = 30mi/w 3.) Head stort = 240 = 8 hrs

white squirrel with a santa hat and travels 50 mi/w obj # 1 eye patch mi/w
Box of Pac N Mactraveling 60 mi/w
leaves at the same time in opposite
linetine
a) How for away would they be
a) How for away would they be after 5 hours?
Relative Rate same direction - subtract different direction - add 80mi/w 82mi/w 162mi/w Relative rate 50mi/wr + 60mi/w 110mi/w
80mi/w 82m/w 82m/w
82mi/w 162mi/w
Politice rate 50mi/hr + 60mi/Lr (110mi/hr
(5hrs)(110 m/w) = 550 mi
b) How long until the objects are 1000 miles apart?
1000 miles apart?
niles apart = 1000 mi = 9.09 = 9.1 hrs

Algebra 1

Chapter 2 Practice Test

1.) (5 pts each) Solving One Step Equations (2-1) Solve each equation.

a)
$$b + 8 = 21$$

$$\frac{d}{d} \left(\frac{y}{8} \right) = (5)8$$

$$y = 40$$

e)
$$-15t = 45$$

2.) (5 pts each) Solving Two-Step Equations (2-2) Solve each equation.

(a)
$$3x + 8 = 44$$

 $-8 - 8$
 $3x = 36$
 $3 = 36$
 $3 = 36$

c)
$$15 = 6x - 9$$

d) 8 =
$$\frac{a}{-7}$$
 + 12

3.) (5 pts each) Solving Multi-Step Equations (2-3) Solve each equation.

a)
$$8c + 7(2c - 3) = 23$$

(a)
$$3(4 + x)(-)(2x + 3) = 14$$

 $|2 + 3x - 2x - 3| = 14$
 $|2 + 3x - 2x - 3| = 14$
 $|2 + 3x - 2x - 3| = 14$
 $|2 + 49| = 14$
 $|-9| - 9|$
(b) $|3(4 + x)(-)(2x + 3)| = 14$
 $|2 + 3x - 2x - 3| = 14$
 $|2 + 49| = 14$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| - 9|$
 $|-9| -$

4.) (5 pts each) Equations with Variables on Both Sides (2-4) Solve each equation.

(a)
$$6x - 25 = 7 - 2x$$

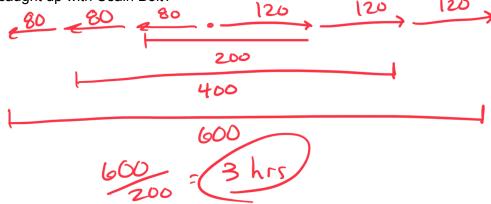
 $+2x$
 $8x - 25 = 7$
 $+25 + 25$
 $8x - 32$
(b) $4(a - 2) = 7a - 35$
 $4a - 8 = 7a - 35$
 $+35$
 $+35$
 $+35$
 $+35$
 $+4a + 27 = 7a$
 $-4a$
 $-$

d)
$$8(3y - 2) = 4(5y + 4)$$

5.) (5 pts each) Equations and Problem Solving (2-5) Write and solve an equation for each situation.

a) A man stole Nate's burrito and drove away at 50 mi/hr. Hangry, Nate took off on foot in the same direction a half an hour later. If Nate ran at 60 mi/hr, how long will it take for him to catch the nefarious burrito burglar?

b) A train leaves the station at 12pm traveling at 120 mi/hr. A second train left from the same station at 2pm traveling 80 mi/hr in the poposite direction. How long until the trains are 840 miles apart?


11 -> 120mi/r

80 nifer T2 3hr after 2pm + 5pm
2pm
Head start (2hre)(120mi/r) = 240 hni - 240

Relative: 120mi/r + 80mi/r = 200mi/r 2pm 600

Relative: 120mi/r + 80mi/r = 200mi/r 2pm 600

c) Usain Bolt ran an iron man event at a respectable 12 mi/hr. Nate, feeling generous, gave him an hour head start. If Nate ran 18 mi/hr, how long until he caught up with Usain Bolt?

