

Researchers at MIT prove that rolling shopping carts will almost invariably hit the most expensive car in their vicinity.

Kinematics

The study of motion in
One Dimension

SPEED LIMIT

Unit 2 Motion

Relative motion
Quantifying Motion

- Scalar vs. Vector
- Speed vs. Velocity
- Distance vs. Displacement
- Acceleration
- Kinematic equations

Graphical interpretation of motion
Free fall motion

Classification of
 Physics Quantities

Vector - quantity with both magnitude (size) and direction Scalar - quantity with magnitude only

Vectors:

- Displacement
- Velocity
- Acceleration
- Momentum
- Force

Scalars:

- Distance
- Speed
- Time
- Mass
- Energy

Sign Conventions

- Positive sign
- Travel East, to the right or travel North, upwards

- Negative sign
- Travel West, to the left or travel South, downwards

Units

Units are not the same as quantities!

Quantity . . . Unit (symbol)

- Displacement \& Distance . . . meter (m)
- Time . . . second (s)
- Velocity \& Speed . . . (m/s)
- Acceleration . . . (m/s²)
- Mass . . . kilogram (kg)
- Momentum . . . (kg•m/s)
- Force . . .Newton (N)
- Energy . . . Joule (J)

Kinematics definitions

- Kinematics - branch of physics; study of motion
- Distance (d) - how far you have traveled, regardless of direction (length of the path traveled)
- Displacement (d) - where you are in relation to where you started, includes direction (length and direction from start to finish)

Distance vs. Displacement

- You drive the path, and your odometer goes up by 8 miles (your distance).
- Your displacement is the shorter directed distance from start to stop (green arrow).
-What if you drove in a circle?

Speed, Velocity, \& Acceleration

- Speed (v) - how fast you go
- Velocity (\boldsymbol{v}) - how fast and which way; the rate at which displacement changes
- Acceleration (a) - how fast you speed up, slow down, or change direction; the rate at which velocity changes

Speed vs. Velocity

- Speed is a scalar (it does not consider direction) Ex: $v=20 \mathrm{mph}$
- Speed is often the magnitude of velocity.
- Velocity is a vector (it considers both speed and direction). Ex: $v=20 \mathrm{mph}$ at 15° south of west

Velocity \& Acceleration Sign Chart

	VELOC ITY		
A		+	-
C			
C		Moving forward;	Moving backward;
L	+	Speeding up	Slowing down
E			
$R A$		Moving forward;	Moving backward;
TI		Speeding up	
N	-	Slowing down	

Kinematics Formula Summary

For 1-D motion with constant acceleration:

$$
\begin{aligned}
& \text { - } v_{f}=v_{\mathrm{i}}+a t \\
& \cdot \bar{v}=\left(v_{\mathrm{i}}+v_{f}\right) / 2 \\
& \cdot d=v_{i} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

- $v_{f}^{2}=v_{i}^{2}+2 a d$
- $a=\Delta v / t$
- $v=d / t$

ProblemSolving Method

vi_{i}	
vf	
ΔV	
$\mathrm{v}_{\text {bar }}$	
a	
$\Delta \mathrm{x}$	
$\Delta \mathrm{t}$	

Graphing Motion
Motion

$$
\begin{aligned}
& \text { Motion } \\
& \text { Crop pis }
\end{aligned}
$$

Types of Motion Graphs

- d-t displacement vs. time

- v-t velocity vs. time

- a-t acceleration vs. time

d-t Graph with Constant Speed

- The slope of a distance-time graph represents velocity.
A constant slope means a constant velocity.
The slope can be positive, negative ,
or zero.

Distance-Time Graph

d-t Graph with Changing Velocity

This curve

 shows a changing slope which means $\mathrm{a}^{\text {흠 }}$ changing velocity

Finding the Velocity

The slope of the tangent line to the curve represents the instantaneous velocity

Displacement vs Time

Which one(s) are motionless?
Which one(s) have a constant velocity?

Which one(s) are accelerating?

Which one(s) return to their starting position?

Which one(s) have a positive velocity?

Which one(s) meet?

v-t Graph with Constant Acceleration

- The slope of a speed time graph represents acceleration.
- A constant slope implies a constant acceleration.
- The slope can be positive, negative, or zero

Velocity-Time Graph

v-t Graph Displacements

- The area under the curve to the taxis represents the displacement of the object.
- The area can be found using simple geometry formulas.
- The area may be "negative" if the curve lies under the t -axis.

v-t Graph Displacements

Area $=$ Length x Width

Time

v-t Graph Displacements

Area $=1 / 2$ Base \times Height

Disp.
Time

Speed of a car v. time

Which one(s) are motionless?

Which one(s) have a constant velocity?

Which one(s) are accelerating?

Which one(s) change their motion?

Which one(s) have a positive velocity?

Which one(s) displace the least?

a-t Graph with Constant Acceleration

- The slope of an acceleration-time graph will be zero in this course.
- A zero slope implies a constant acceleration.
- The area under the curve represents the change in velocity of the object.

a-t Graph Change in Velocities

Acceleration

Summary

d-t Graph

- Slope represents velocity
- v-t Graph
- Slope represents acceleration
- Area under curve represents displacement
- a-t Graph
- Area under curve represents $\Delta \mathrm{v}$

