TH-GP General Physics Week 9 11/9

$$
v_{f}=v_{i}+a t
$$

$$
x_{f}=x_{i}+\frac{1}{2}\left(v_{i}+v_{f}\right) t
$$

assumes constant acceleration

$$
\bar{v}=\frac{v_{f}+v_{i}}{2}
$$

$$
\left(v_{f}\right)^{2}=\left(v_{i}\right)^{2}+2 a\left(x_{f}^{\Delta x}-x_{i}\right)
$$

constant acceleration

$$
x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}
$$

Positim $\quad x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}$ $\downarrow \frac{1 s^{s t}}{\text { Derivative }}$
Velocity $V_{f}=V_{i}+a t$ $\downarrow \frac{2 r d}{\text { Derivative }}$
Acceleration
acceleration is constant

N NATES HOPE DROP
\% DREAMS

$$
x_{i}=200 \mathrm{~m}
$$

$$
v_{i}=0 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
& \llbracket a_{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2} \rrbracket
\end{aligned}
$$

$$
a=-9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

acceleration is due to gravity
Tine to impact

$$
\begin{aligned}
& 0=200 \mathrm{~m}+\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& 0=200 \mathrm{~m}-4.90 \mathrm{~m} / \mathrm{s}^{2} t^{2} \\
&-200 \mathrm{~m}-200 \mathrm{~m} \\
& t=0 \mathrm{~s} \quad 0 \mathrm{~m} / \mathrm{s} \quad \frac{-200 \mathrm{~m}}{-4.90 \mathrm{mo} / \mathrm{s}^{2}}=\left(-4.90 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& t .4 .90 \mathrm{~m} / \mathrm{s}^{2} \\
& t=1 \mathrm{~s}-9.8 \mathrm{~m} / \mathrm{s} \quad \sqrt{40.82 \mathrm{~s}^{2}}=\sqrt{t^{2}} \\
& t=2 \mathrm{~s}-19.6 \mathrm{~m} / \mathrm{s} \quad 6.4 \mathrm{~s}=t \quad \text { or } \quad 6 \mathrm{~s}
\end{aligned}
$$

5 flaming Time to impact Drop Christmas
$1 \S$
6

$$
\begin{aligned}
& x_{f}=0 \\
& x_{i}=500 \mathrm{~m} \\
& v_{i}=0 \quad 0=500-4.9 t^{2} \\
& a=-9.80 \mathrm{~m} / \mathrm{s}^{2}-500-500 \\
& \text { - } \\
& x_{f}=x_{i}+y_{i} t^{0}+\frac{1}{2} a t^{2} \\
& x_{i}=500 \mathrm{~m} \quad 0^{k}=500+\frac{1}{2}\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& \frac{-500}{-4.9}=\frac{-4.9 t^{2}}{-4.9} \\
& t=10.1 \mathrm{~s} \\
& \sqrt{102}=\sqrt{t^{2}}
\end{aligned}
$$

ne song *

$$
\begin{aligned}
& V_{i}=20 \mathrm{~m} / \mathrm{s} \\
& t=0 \quad 20 \mathrm{~m} / \mathrm{s} \\
& t=1 \quad 10 \mathrm{~m} / \mathrm{s} \\
& t=2 \quad 0 \mathrm{~m} / \mathrm{s} \rightarrow-10 \mathrm{~m} / \mathrm{s}^{2} \\
& t=3 \quad-10 \mathrm{~m} / \mathrm{s} \\
& t=4-20 \mathrm{~m} / \mathrm{s} \\
& t=4
\end{aligned}
$$

velocity at max height $=0 \mathrm{~m} / \mathrm{s}$

领 $\left[V_{i}=30 \mathrm{~m} / \mathrm{s}\right]$
time to max height

$$
\begin{aligned}
& v_{f}=0 \mathrm{~m} / \mathrm{s} \\
& {\left[\begin{array}{l}
v_{f}
\end{array}=v_{i}+a t\right]} \\
& \downarrow \\
& \downarrow=30+(-9.8) t \\
& 0=30-9.8 t \\
& 0=30 \\
& \frac{-30}{-9.8}=\frac{-9.8 t}{-9.8}
\end{aligned}
$$

time to \max height What is max height?

$$
\begin{aligned}
& \underset{\max \text { height }}{X_{f}}=\underset{\downarrow}{X_{i}}+v_{i} t+\frac{1}{2} a t^{2} \\
& 600+30(3.06)+\frac{1}{2}(\underbrace{-9.8})(3.06)^{2} \\
& \text { time to impact }=600+91.8-45.9 \\
& t=14.5 \mathrm{~s}=645.9 \mathrm{~m} \quad 646 \mathrm{~m} \\
& 0=x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
& z_{2}^{\prime}(-9.8)=-4.9 \\
& \& 0=600+30 t-4.9 t^{2} \xi
\end{aligned}
$$

What was the velocity upm impact?

$$
\begin{aligned}
V_{f}= & V_{i}+a t \quad \text { time } t_{0} \text { impact } \\
& \downarrow \\
& 30+(-9.8)(14.5) \\
& =-107 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2.) Max height

$$
\begin{aligned}
& x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
&=600+(40)(4.1)+\frac{1}{2}(-9.8)(4.1)^{2} \\
& 681 \mathrm{~m}
\end{aligned}
$$

3.) Time to impact

$$
\begin{aligned}
0= & 600 \\
& +40 t-4.9 t^{2} \\
& t_{0} \text { Desmss. } t=15.9 \mathrm{~s}
\end{aligned}
$$

4.) Velocity upon impact

$$
\begin{aligned}
\mathrm{m} / \mathrm{s} \quad v_{f}= & v_{i}+a t \\
& \downarrow \\
& 40+(-9.8)(15.9)=-115.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2.5 One-Dimensional Motion with Constant Acceleration

12.) Write the formula with the given terms: final velocity, initial velocity, acceleration, and time.
13.) Solve each.
a) Find the final velocity with the following parameters.

$$
v_{i}=40.0 \mathrm{~m} / \mathrm{s} \quad a=2.00 \mathrm{~m} / \mathrm{s}^{2} \quad t=12.0 \mathrm{~s}
$$

b) Find the final velocity with the following parameters.

$$
v_{i}=28.0 \mathrm{~m} / \mathrm{s} \quad a=3.50 \mathrm{~m} / \mathrm{s}^{2} \quad t=4.50 \mathrm{~s}
$$

c) Find the initial velocity with the following parameters.

$$
v_{f}=16.0 \mathrm{~m} / \mathrm{s} \quad a=1.50 \mathrm{~m} / \mathrm{s}^{2} \quad t=6.00 \mathrm{~s}
$$

v_{f}
a
t
$V_{i}=$?

$$
\begin{aligned}
& V_{f}=V_{i}+a t \\
& \downarrow \\
& 16=v_{i}+(1.5)(6)
\end{aligned}
$$

$$
\begin{array}{r}
16 \\
-9
\end{array}=v_{i}+9
$$

$$
v_{c}=7.00 \mathrm{~m} / \mathrm{s}
$$

d) Find the acceleration with the following parameters.

$$
v_{f}=24.0 \mathrm{~m} / \mathrm{s} \quad v_{i}=18.0 \mathrm{~m} / \mathrm{s} \quad t=3.00 \mathrm{~s}
$$

14.) Write the formula for average velocity (with constant acceleration).
15.) If the acceleration is constant, find the average velocity under each of the following conditions:
a) $v_{f}=33.0 \mathrm{~m} / \mathrm{s} \quad v_{i}=15.0 \mathrm{~m} / \mathrm{s}$

$\bar{V}=$?

$$
\bar{V}=\frac{\frac{V_{f}+V_{i}}{2}=\frac{60+72}{2}=\frac{132}{2}}{66.0 \mathrm{~m} / \mathrm{s}}
$$

16.) Write the formula with the given terms: final position, initial position, final velocity, initial velocity, and time.
position
17.) Find the final velocity under each of the following conditions:
a) $v_{f}=26.0 \mathrm{~m} / \mathrm{s} \quad v_{i}=14.0 \mathrm{~m} / \mathrm{s} \quad x_{i}=45.0 \mathrm{~m} \quad t=4.00 \mathrm{~s}$

$$
\begin{aligned}
& x_{f}=\text { ? } \\
& v_{f} \quad x_{i} \\
& v_{i} t \\
& x_{f}=x_{i}+\frac{1}{2}\left(v_{f}+v_{i}\right) t \\
& \begin{aligned}
= & 45+\frac{1}{2}(26+14)(\\
& 45+\frac{1}{2}(40)(4)
\end{aligned} \\
& \text { b) } v_{f}=16 \mathrm{~m} / \mathrm{s} \quad v_{i}=28 \mathrm{~m} / \mathrm{s} \quad x_{i}=80 \mathrm{~m} \quad t=6 \mathrm{~s}
\end{aligned}
$$

18.) Write the formula with the given terms: final position, initial position, acceleration, initial velocity, and time.
19.) Find the final position under each of the following conditions:
a) $x_{i}=52.0 \mathrm{~m} \quad v_{i}=8.50 \mathrm{~m} / \mathrm{s} \quad a=2.00 \mathrm{~m} / \mathrm{s}^{2} \quad t=8.00 \mathrm{~s}$

$$
\begin{aligned}
& x_{f} \\
& x_{i} \quad t \\
& X_{f}=X_{i}+v_{i} t+\frac{1}{2} a t^{2} \\
& 52+(8.5)(8)+\frac{1}{2}(2)(8)^{2} \\
& a \\
& 52+68+64=184 \mathrm{~m}
\end{aligned}
$$

b) $\quad x_{i}=24.0 \mathrm{~m} \quad v_{i}=12.5 \mathrm{~m} / \mathrm{s} \quad a=3.50 \mathrm{~m} / \mathrm{s}^{2} \quad t=6.00 \mathrm{~s}$
c) $x_{i}=35.0 \mathrm{~m} \quad v_{i}=-2.50 \mathrm{~m} / \mathrm{s} \quad a=4.00 \mathrm{~m} / \mathrm{s}^{2} \quad t=3.00 \mathrm{~s}$
20.) Write the formula with the given terms: final position, initial position, acceleration, initial velocity, and final velocity.
position
21.) Find the final under each of the following conditions.
a) $x_{i}=30.0 \mathrm{~m} \quad v_{f}=10.0 \mathrm{~m} / \mathrm{s} \quad v_{i}=15.0 \mathrm{~m} / \mathrm{s} \quad a=2.00 \mathrm{~m} / \mathrm{s}^{2}$

$$
X_{f}=?
$$

$$
x_{i}
$$

$$
v_{f}
$$

$$
v_{i}
$$

$$
\begin{aligned}
& \left(v_{f}\right)^{2}=\left(v_{i}\right)^{2}+2 a\left(x_{f}-x_{i}\right) \\
& (10)^{2}=(15)^{2}+2(2)\left(x_{f}-30\right) \\
& 100=225+4 x_{f}-120
\end{aligned}
$$

a

$$
x_{f}=-\frac{5}{4} m
$$

