TH-GP General Physics Week 20 2/15 Uniform Circular Motim

centrifugal acceleration

force away from the unto

Gravity

centripetal acceleration is acceleration toward the center of the circle and perpendicular to the velocity

$$
\frac{(m / s)^{2}}{m}=\frac{\frac{m^{x}}{s^{2}}}{m}
$$

Radius of Earth: $6,378,100 \mathrm{~m}$ velocity of Earth: $29,784.8 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
a_{c}=\frac{v^{2}}{r} & =\frac{(29,784.8 \mathrm{~m} / \mathrm{s})^{2}}{6,378,100 \mathrm{~m}} \\
& =139.1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Noah placed a rock on a 3 m string. If he spun it at a constant $12 \mathrm{~m} / \mathrm{s}$ in a circular motion, what is the centripetal accelerates?

$$
a_{c}=\frac{v^{2}}{r}=\frac{(12 \mathrm{~m} / \mathrm{s})^{2}}{3 \mathrm{~m}}=\frac{144 \mathrm{~m}^{2} / \mathrm{s}^{2}}{3 \mathrm{~m} / \mathrm{s}^{2}}
$$

satellite $V=17,000 \mathrm{mi} / \mathrm{hr}$
distance to the $=4000 \mathrm{mi}$
center of the earth

$$
a_{c}=\frac{(V)^{2}}{r}=\frac{(17,000 \mathrm{mi} / \mathrm{w})^{2}}{4,000 \mathrm{mi}}
$$

We have a ship with a radius of 60 m . How fast would we need to go (in a circle) to simulate gravity?

$$
\begin{aligned}
a_{c} & =\frac{v^{2}}{r} \\
60(9.8) & =\left(\frac{v^{2}}{60 \mathrm{~m}}\right)^{60}, v=24.3 \mathrm{~m} / \mathrm{s} \\
\sqrt{588} & =\sqrt{v^{2}}
\end{aligned}
$$

$$
\begin{aligned}
v & =16,760 \mathrm{mi} / \mathrm{hr} \rightarrow 7,492.4 \mathrm{~m} / \mathrm{s} \\
r & =438 \mathrm{mi} \rightarrow 704,893 \mathrm{~m} \\
a_{c} & =\frac{v^{2}}{r}=\frac{(7,492.4 \mathrm{~m} / \mathrm{s})^{2}}{704,893 \mathrm{~m}}=79.6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

1.) (8 pts) Tamps the Raccoon has discovered a pack of sinister looking squirrels approaching his maximum security bachelor pad (or maxi-pad for short). Determine the polar coordinates of the squirrels if they are currently 400 ft east and 550 ft north of the maxi-pad. Rectangular Coordinates ($400 \mathrm{ft}, 550 \mathrm{ft}$)

$$
\begin{aligned}
& x=400 \quad y=550 \\
& r=\sqrt{x^{2}+y^{2}}=\sqrt{(400)^{2}+(550)^{2}}=680 \mathrm{ft} \\
& \theta=\tan ^{-1} \frac{y}{x} \tan ^{-1}\left(\frac{550}{400}\right)=\frac{54^{\circ}}{\left(680 \mathrm{ft}, 54^{\circ}\right)}
\end{aligned}
$$

2.) (8 pts) With the squirrel crisis averted, Tamp now trains his sights on the dumpster of a new Mediterranian restaurant that recently opened. According to his Raccoon-dar, the dumpster is located at the polar coordinates ($1.8 \mathrm{mi}, 124^{\circ}$). Find the location in rectangular coordinates.

$x=r \cos \theta$

$$
\begin{aligned}
& x=(1.8 \mathrm{mi})(\cos 124)=-1.006=-1.01 \mathrm{mi} \\
& y=r \sin \theta \\
& y=(1.8 \mathrm{mi})(\sin 124)= \\
&(-1.49 \mathrm{mi} \\
&(-01 \mathrm{mi}, 1.49 \mathrm{mi})
\end{aligned}
$$

