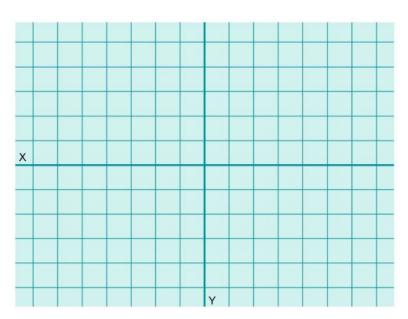

7.) Which of the following are vector quantities and which are scalar quantities?(a) your age (b) acceleration (c) velocity (d) speed (e) mass


8.) Given the following vectors, create head to tail models and find the resultant magnitude and direction. the arrows are not perfect but use the corner that they are closest to

e) A-C

Magnitude = _____ Direction = _____

TH-6P General Physics Week 15
$$\frac{1}{11}$$

Sum of Vectors

A: $\frac{21}{2} + \frac{31}{3}$ B: $\frac{42}{-51}$

A+B $\frac{1}{2} + \frac{2}{3}$

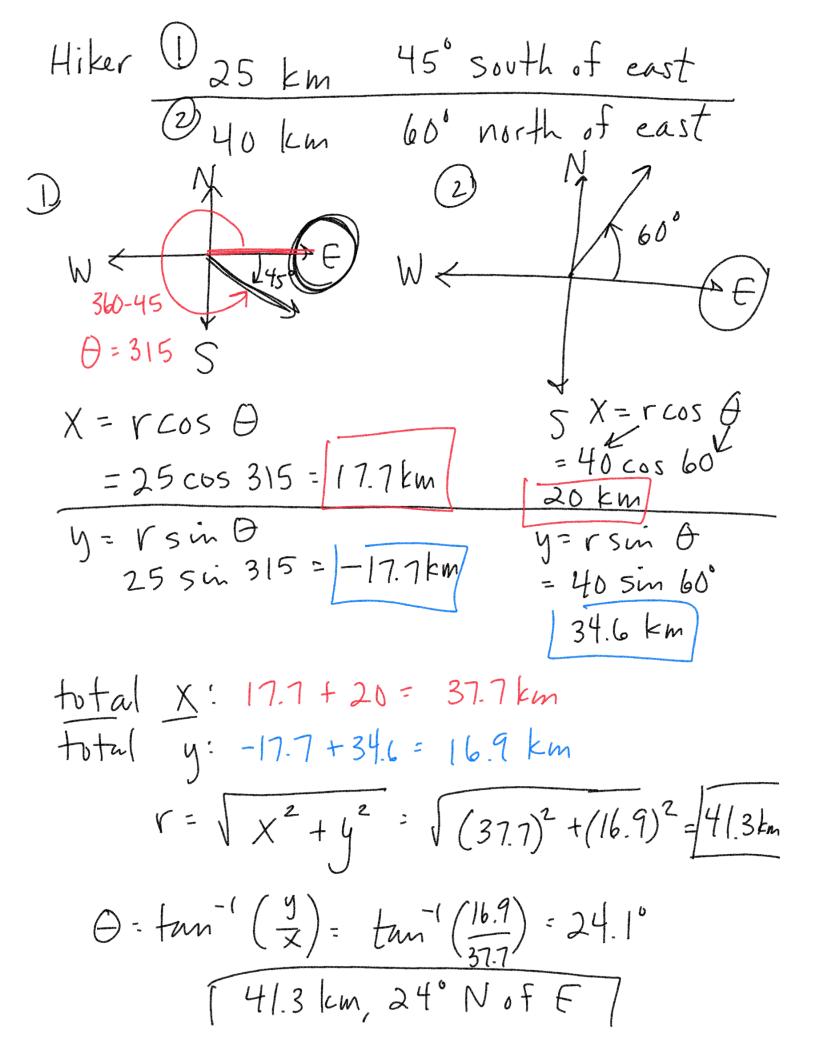
Fesultant: $r = \sqrt{x^2 + y^2}$
 $\frac{1}{(6)^2 + (-2)^2} = \frac{36 + 4}{360} = \frac{40}{341.6}$

Mag. Dir.

Mag. Dir.

 $\frac{1}{2} + \frac{360}{341.6}$

$$d_{1} = \langle 15\hat{c} - 30\hat{j} + 12\hat{k} \rangle$$


$$d_{2} = \langle 23\hat{c} + 14\hat{j} + 5\hat{k} \rangle$$

$$d_{3} = \langle 13\hat{c} + 15\hat{j} \rangle$$

$$\langle 51\hat{c} - \hat{j} + 17\hat{k} \rangle$$

Find magnitude/resultant
$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\sqrt{(51)^2 + (-1)^2 + (17)^2} = \sqrt{53.7}$$

(1) 4 km 30° North of East

(2) 6 km 60° North of West

(3)
$$\theta = 30^{\circ}$$

(4) $\theta = 30^{\circ}$

(5) $\theta = 120^{\circ}$

(7) $\theta = 30^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 30^{\circ}$

(1) $\theta = 30^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 30^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(8) $\theta = 120^{\circ}$

(9) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(1) $\theta = 120^{\circ}$

(2) $\theta = 120^{\circ}$

(3) $\theta = 120^{\circ}$

(4) $\theta = 120^{\circ}$

(5) $\theta = 120^{\circ}$

(6) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$

(7) $\theta = 120^{\circ}$