TH-6P General Physics Week 14 1/4

Nate is infinititely afraid height of the Bunyan. Given. the diagram, how tall is the Bunyan
opp SOH CAHI IOA
$\tan \theta=\frac{o p p}{\operatorname{adj}}$
$(\tan 50)=\left(\frac{h}{80}\right)^{80}$

$$
h=80\left(\tan 50^{\circ}\right)=95.3 \mathrm{ft}
$$

Nate is spreading birthday joy with his funfetti dip r' dot cannon.
If he rains joy from loft tall building with children a sate distance of 90 ft away, what is the
 angle of the cannon from the building 90 Ft

$$
\begin{aligned}
\tan \theta=\frac{o p f}{a d j} \quad \tan \theta & =\frac{90}{60} \\
\theta & =\tan ^{-1}\left(\frac{90}{60}\right)=56.3^{\circ}
\end{aligned}
$$

Polar Coordinates \rightarrow Regular

$$
\begin{gathered}
(r, \theta) \\
\left(8,70^{\circ}\right) \\
x=r \cos \theta \\
x=8 \cos 20 \\
x=2.73
\end{gathered}
$$

$$
y=8 \sin 70
$$

$$
\cos \theta=\frac{x}{r}
$$

$y=7.51$ $x=r \cos \theta$

Polar Coordinate \rightarrow Rectangular

$$
\begin{array}{cc}
\left(4,135^{\circ}\right) & \longrightarrow(x, y)_{90^{\circ}} \quad \begin{array}{r}
i, 135^{\circ} \\
x=r \cos \theta \\
4 \cos (135)=-2.8
\end{array}
\end{array}
$$

$$
y=4 \sin 135^{\circ}=2.8
$$

$$
(-2.8,2.8)
$$

$A+B \quad A d d$ from head
 to tail

$A+B$

$$
A+B
$$

$$
\left(A_{x}+B_{x}\right)+\left(A_{y}+B_{y}\right)
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

$\theta=\tan ^{-1} \frac{y}{x}$

$$
\begin{gathered}
A_{x}=4 \quad B_{x}=5 \\
A_{x}+B_{x}=9 \\
A_{y}=3 \quad B_{y}=-2
\end{gathered}
$$

$A_{y}+B_{y}=1 \quad r=\sqrt{9^{2}+1^{2}}=\sqrt{81+1}$
$\left(\sqrt{82}, 6.3^{\circ}\right)$

$$
\theta=\tan ^{-1}\left(\frac{1}{9}\right)=6.3^{\circ}
$$

7.) Which of the following are vector quantities and which are scalar quantities?(a) your age (b) acceleration (c) velocity (d) speed (e) mass
8.) Given the following vectors, create head to tail models and find the resultant magnitude and direction. the arrows are not perfect but use the corner that they are closest to

a) $A+B$

$)_{\text {Magnitude }}=$
 Direction $=\frac{76^{\circ}}{-1 y}$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{(1)^{2}+(4)^{2}} \quad \theta \cdot \tan ^{-1} \frac{y}{x}$

$$
\sqrt{1+16}=\sqrt{17} \tan ^{-1}\left(\frac{4}{1}\right)=76
$$

B

3
total \times component

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
3+5=8
$$

$$
\sqrt{8^{2}+2^{2}}=\sqrt{64+4}
$$

total y component

$$
\left(2 \sqrt{17}, 14^{\circ}\right)
$$

$$
\begin{array}{r}
\sqrt{68}=2 \sqrt{17} \\
\theta=\tan ^{-1}\left(\frac{2}{8}\right)=14^{\circ}
\end{array}
$$

$A:\langle 5 \hat{\imath}-4 \hat{\jmath}\rangle$

$$
B:\langle-6 \hat{\imath}+\hat{\jmath}\rangle
$$

Find $A+B$

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(-3)^{2}}
$$

$$
\begin{equation*}
\left\langle\underset{\downarrow}{A x}+B_{x}, \underset{\downarrow}{A y}+B_{y}\right\rangle \tag{1+9}
\end{equation*}
$$

$$
\begin{array}{ll}
5+(-6),-4+1 \\
-1,-3 & =\langle-\hat{\imath}-3 \hat{\jmath}\rangle \\
x & y
\end{array} \quad \theta=\tan ^{-1} \frac{y}{x}=\tan ^{-1}\left(\frac{-3}{-1}\right)
$$

