TH-GP General Physics Week 4 10/5
1.) $\left\{\begin{array}{l}\text { Density: } 14.0 \mathrm{~g} / \mathrm{cm}^{3} \\ \text { Mass: } 24.0 \mathrm{~g} 3 \mathrm{~s} 5 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=\frac{\text { mass }}{\text { volume }}\end{array}\right.$
volume: ?

$$
F=14.0 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$F=($ mass $)$ (acceleration)

$$
D_{V}=\frac{M}{V}
$$

$$
35 F V=\frac{M}{D}=\frac{24.0 \mathrm{~g}}{14.0 \mathrm{~g} / \mathrm{cm}^{3}}
$$

2.) $M_{a s s}: 18.6 \mathrm{~g}^{35}$

$$
V=1.71 \mathrm{~cm}^{3}
$$

Volume: $38.2 \mathrm{~cm}^{3}$
Density:?

$$
D=\frac{M}{V}=\frac{18.6 \mathrm{~g}}{38.2 \mathrm{~cm}^{3}}
$$

$$
=0.4869
$$

3.) Volume: $12.4 \mathrm{~cm}^{3}$

Density: $2.60 \mathrm{~g} / \mathrm{cm}^{3}$
Mass: ?

$$
\begin{aligned}
& V(D)=\left(\frac{M}{V}\right) V \\
& M=(V)(D)=\left(12.4 \mathrm{~cm}^{3}\right)(2.609 \mathrm{gm})
\end{aligned}
$$

$$
32.2 \mathrm{~g}
$$

1.) 380000
2.) 0.00058

$$
3.8 * 10^{5}
$$

$$
5.8 * 10^{-4}
$$

3.) 706000000
4.) $0,00000,732$

$$
7.06 * 10^{8}
$$

5.) 891000

$$
8.91 * 10^{5}
$$

6.) 0.00000901

$$
9.01 * 10^{-6}
$$

Find the number of significant digits
1.) 5.004 d
6.) 0.002230 m
2.) 0.0047 m
(2)
7.) 9 planets
3.) 6000 km
(1)
4.) $200 . \mathrm{cm}$
(3)
$200(3)$
8.) 400.03 km 5
5.) 4009^{4}

200 (2) 9.) 5.000 cm
(4)

Cu Copper
Density ρ
 $\mathrm{cm}^{3}=m L \quad \mathrm{~g} / \mathrm{cm}^{3}$

$$
g / n L
$$

$$
\rho=4.506
$$

$$
\text { mass }=4.51
$$

Density
Chromium $7.19 \mathrm{~g} / \mathrm{mL}$ Tungsten $19.25 \mathrm{~g} / \mathrm{mL}$ cobalt $\quad 8.9 \mathrm{~g} / \mathrm{mL}$ Molybdenum $10.2 \mathrm{~g} / \mathrm{mL}$
carbon $1.82 \mathrm{~g} / \mathrm{mL}$ Copper $8.96 \mathrm{~g} / \mathrm{mL}$
Niobium $8.67 \mathrm{~g} / \mathrm{mL}$ Zinc $7.14 \mathrm{~g} / \mathrm{ml}$
Vanadium $6.0 \mathrm{~g} / \mathrm{mL}$ Aluminum $2.7 \mathrm{~g} / \mathrm{mL}$
Titanium $4.506 \mathrm{~g} / \mathrm{ml}$. Iron $7.86 \mathrm{~g} / \mathrm{ml}$
Antimony $6.6979 / \mathrm{mL}$ Bismouth $9.8 \mathrm{~g} / \mathrm{ml}$

General Physics

Chapter 1: Physics and Measurement

1.4 Dimensional Analysis

1.) What is dimensional analysis? What is it reliant on?
2.) Why can you multiply a number by a series of fractions and not change the value of the original number?
3.) Prove the product of time (measured in s) and velocity (measured in m / s) is a distance (measured in m).

1.5 Conversion of Units

4.) Write the following unit conversions:
a) 1 mile = \qquad ft
b) 1 in $=$ \qquad cm
c) 1 mile $=$ \qquad km
5.) Use unit conversions and dimensional analysis to prove the mile to kilometer equivalent.

1.6 Estimates \& Orders of Magnitude Calculations

6.) Write each of the following in scientific notation:
a) 2067000000
b) 0.000642
c) 205×380000

Dimensional Analysis
c^{1} sf
1.) Burritos are amazing. The standard burrito is 6 inches long and delicious. The moon is, at any given time, 238,900 miles from the earth. How many burritos away is the moon from the earth?

12 inches $=1$ foot 5,280 feet $=1$ mile 1 supreme $=$ beans, guac and ques
Write in scientific notation.
238,900 mi *

2.) Craters be thirsty. A Big Gulp soft drink at $7-11$ is 30 ounces. The Grand Canyon is big. Seriously. It has a volume of $5,450,000,000,000$ cubic yards.

1 ounce $=1.805$ cubic feet 1 cubic yard $=27$ cubic feet

Write in scientific notation.
3.) Mo' money, mo (weight) problem. Money is awesome. And money in bin form... as in Scrooge McDuck's money bin... is beyond awesome. (Note: watching an episode of DuckTales is a homework assignment if you have never watched it)

A penny weighs 2.5 grams Jeff Bezos, owner and founder of Amazon, has a net worth of $\$ 145,400,000,000$. What would be the weight, in pounds, of Jeff Bezos's fortune if he liquidated all of his assets and exchanged it for pennies?

1 pound = 454 grams
Write in scientific notation.

$$
\begin{aligned}
& \$ 145,400,000,000 * \frac{100 \text { pennies }}{\$ 1} * \frac{2.5 \mathrm{~g}}{1 \text { denise }} * \frac{11 \mathrm{~b}}{4549} \\
& 8 \overline{0}, 000,000,000 \mathrm{lbs} \\
& 8.0 * 10^{10} \mathrm{lbs}
\end{aligned}
$$

4.) Tim Janus is a great man. He holds the world record for longest belch at 18.1 seconds. Think about that for a second. Imagine it....

Anyway... How many world record Tim Janus belches are there in one year?
$1 \mathrm{~min}=60 \mathrm{sec} \quad 60 \mathrm{~min}=1 \mathrm{hr} \quad 24 \mathrm{hr}=1$ day $\quad 365$ days $=1 \mathrm{yr}$
Write in scientific notation.

