Chapter 2

The Chemical Context of Life

Wood Ants & Acid

Ants shoot formic acid to defend themselves from attacks from predators (birds).

You Must Know

- The three subatomic particles and their significance.
- The types of bonds and how they form.

I. Matter vs. Energy

Matter		Energy	
•	Has mass & takes up space Affected by gravity Consists of elements and compounds		Moves matter Potential, kinetic Ability to do work Conversions Sound, light, heat

Element

- "pure" substance
- Can't be broken down by "ordinary" means to another substance
- Ex. hydrogen (H),nitrogen (N)

Compound

- 2 or more different elements combined in a fixed ratio
- Ex. H₂O, CO₂

Elements of Life

- 25 elements
 - 96%: O, C, H, N
 - ~ 4%: P, S, Ca, K & trace elements (ex: Fe, I)

Hint: Remember CHNOPS

Table 2.1 Elements in the Human Body

Element	Symbol	Percentage o (including wa	_
Oxygen	0	65.0%	
Carbon	С	18.5%	› 96.3%
Hydrogen	Н	9.5%	7 96.3%
Nitrogen	N	3.3%	
Calcium	Ca	1.5%	
Phosphorus	Р	1.0%	
Potassium	K	0.4%	
Sulfur	S	0.3%	3.7%
Sodium	Na	0.2%	
Chlorine	Cl	0.2%	
Magnesium	Mg	0.1%	

Trace elements (less than 0.01% of mass): Boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), zinc (Zn)

II. Atomic Structure

- Atom = smallest unit of matter that retains properties of an element
- Subatomic particles:

	Mass	Location	Charge
	(dalton or AMU)		
neutron	1	nucleus	0
proton	1	nucleus	+1
electron	negligible	shell	-1

Isotopes

- # meutrons varies, but same # of protons
- Radioactive isotopes used as tracers (follow molecules, medical diagnosis)
- Uncontrolled exposure causes harm

TABLE 2.4	ISOTOPES OF CARBON		
	Carbon-12	Carbon-13	Carbon-14
Protons	6	6	6
Neutrons	6	7	8
Electrons	6	6	6

Electrons exist only at fixed levels of potential energy called electron shells

The Periodic Table of the Elements, in Pictures

Valence Electrons

© 2016 Pearson Education, Inc.

III. Chemical Bonds

Strongest Bonds:

- 1. Covalent: sharing of e-
 - Polar: covalent bond between atoms that differ in electronegativity
 - Eg. H_20

- Nonpolar: e- shared equally;
 - $Eg. O_2 or H_2$

Name and Molecular Space-Filling **Electron Distribution** Structural Model **Formula** Diagram Formula (a) Hydrogen (H₂) H-H(b) Oxygen (O₂) 0=0(c) Water (H₂O) O-H(d) Methane (CH₄) H-C-H

© 2016 Pearson Education, Inc.

III. Chemical Bonds

Strongest Bonds:

- 2. <u>Ionic</u>: 2 ions (+/-) bond (givers/takers)
 - Na+Cl-
 - Affected by environment (eg. water)

Weaker Bonds:

3. <u>Hydrogen</u>: H of *polar covalent* molecule bonds to electronegative atom of *other polar covalent* molecules

Weaker Bonds:

- 4. <u>Van der Waals Interactions</u>: slight, fleeting attractions between atoms and molecules close together
 - Weakest bond
 - Eg. gecko toe hairs + wall surface

Bonds

Covalent	Ionic	Hydrogen		
All important to life				
Form cell's molecules	Quick reactions/ responses	H bonds to other electronegative atoms		
Strong bond	Weaker bond (esp. in H ₂ O)	Even weaker		
Made and broken by chemical reactions				

A molecule's <u>STRUCTURE</u> (<u>SHAPE</u>) affects a molecule's <u>FUNCTION</u>

- Similar shapes = mimic
 - morphine, heroin, opiates mimic endorphin (euphoria, relieve pain)

Chemical Reactions

- Reactants > Products
 - Eg. $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + O_2$
- Some reactions are reversible:
 - Eg. $3H_2 + N_2 \longrightarrow 2NH_3$
- Chemical equilibrium: point at which forward and reverse reactions offset one another exactly
 - Reactions still occurring, but <u>no net change</u> in concentrations of reactants/products