Four Levels of Protein Structure

1. Primary

- Amino acid (AA) sequence
- 20 different AA's
- peptide bonds link AA's

Basic Principles of Protein Folding

- A. Hydrophobic AA buried in interior of protein (hydrophobic interactions)
- B. Hydrophilic AA exposed on surface of protein (hydrogen bonds)
- C. Acidic + Basic AA form salt bridges (ionic bonds).
- D. Cysteines can form <u>disulfide bonds</u>.

niconnert

poler amino acid mononos go outward, non poler go inward-vater leaves interior - protei collapses to functional

Four Levels of Protein Structure (continued)

3. Tertiary 3-D structure -> shape

- Bonding between <u>side chains</u> (R groups) of amino acids
- H bonds, ionic bonds, disulfide bridges, hydrophobic interactions, van der Waals interactions

Four Levels of Protein Structure (continued)
Quaternary moltiple polypeptide chains
2+ polypeptides bond together come fogether

amino acids \rightarrow polypeptides \rightarrow protein

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Protein structure and function are sensitive to chemical and physical conditions
Unfolds or denatures if pH and temperature are not optimal

change in structure = change in function

Technique Diffracted X-ray source X-rays X-ray crystallography used to determine the 3-D X-ray beam structure of proteins Crystal Digital X-ray diffraction detector pattern Results

Genomics: Analysis of genes and genomes

III. Carbohydrates

- Fuel and building material
- Include simple sugars (fructose) and polymers (starch)
- Ratio of 1 carbon: 2 hydrogen: 1 oxygen or CH_2O
- monosaccharide \rightarrow disaccharide \rightarrow polysaccharid
- <u>Monosaccharides</u> = monomers (eg. glucose, ribose)
- <u>Polysaccharides</u>:
 <u>Storage</u> (plants-starch, animals-glycogen)
 <u>Structure</u> (plant-cellulose, arthropod-chitin)

Differ in position & orientation of glycosidic linkage

 $C_1 H_2 O_1$

 $C_1(H_20)$

The structure and classification of some monosaccharides

Linear and ring forms of glucose

Carbohydrate synthesis

Cellulose vs. Starch

Two Forms of Glucose: α glucose & β glucose

Cellulose vs. Starch

- Starch = α glucose monomers
- Cellulose = β glucose monomers

Storage polysaccharides of plants (starch) and animals (glycogen)

Structural polysaccharides: cellulose & chitin (exoskeleton)

IV. Lipids

A. Fats (triglyceride): store energy

- Glycerol + 3 Fatty Acids
- saturated, unsaturated, polyunsaturated

B. Steroids: cholesterol and hormones
C. Phospholipids: lipid bilayer of cell membrane

(b) Fat molecule (triacylglycerol)

Solid at room temt

Solid at room temp.

Eg. butter, lard

Eg. corn oil, olive oil

Liquid at room temp.

Cholesterol, a steroid

The structure of a phospholipid

Hydrophobic/hydrophilic interactions make a phospholipid bilayer

Copyright C Pearson Education, Inc., publishing as Benjamin Cummings.

Components	Examples	Functions
R H H H H H H H H H H H H H H H H H H H	 Enzymes Structural proteins Storage proteins Transport proteins Hormones Receptor proteins Motor proteins Defensive proteins 	 Catalyze chemical reactions Provide structural support Store amino acids Transport substances Coordinate organismal responses Receive signals from outside cell Function in cell movement Protect against disease

Components	Examples	Functions
Nitrogenous base Phosphate group	DNA: • Sugar = deoxyribose • Nitrogenous bases = C, G, A, T • Usually double-stranded	Stores hereditary information
Nucleotide monomer	RNA: • Sugar = ribose • Nitrogenous bases = C, G, A, U • Usually single-stranded	Various functions in gene expression, including carrying instructions from DNA to ribosomes

Components	Examples	Functions
сн₂он н ⊂ Ч	Monosaccharides: glucose, fructose	Fuel; carbon sources that can be converted to other molecules or combined into polymers
	Disaccharides: lactose, sucrose	
HOHHOH HOHOH HOH HOH HOH HOH	Polysaccharides: • Cellulose (plants) • Starch (plants) • Glycogen (animals) • Chitin (animals and fungi)	 Strengthens plant cell walls Stores glucose for energy Stores glucose for energy Strengthens exoskeletons and fungal cell walls

Components	Examples	Functions
Glycerol 3 fatty acids	Triacylglycerols (fats or oils): glycerol + three fatty acids	Important energy source
Head with P 2 fatty acids	Phospholipids: glycerol + phosphate group + two fatty acids	Lipid bilayers of membranes Hydrophobic tails Hydrophilic heads
Steroid backbone	Steroids: four fused rings with attached chemical groups	 Component of cell membranes (cholesterol) Signaling molecules that travel through the body (hormones)