Macromolecules

Name	Structure	Polarity	Links	Other
Hydroxyl	-OH dissolves	Polar Nydrophi Water lov	Sugars ic	Accounts for sweetness.
Carbonyl		Polar	Fats	Head group of fats.
Carboxyl Carboxy acid	СОН	Polar	Amino acids	Found in every amino acid.
Amino	H H	Polar	Amino acids	Found in every amino acid.
Sulfhydryl		Polar	Antigens	Smells awful.

SR	NA d' NA	eoxyribonu	cleic ac	id	link nu	cleicacid
is me oryty	Phosphate	0 - 00	0 -0-P-0- 0-	Polar (DNA Nucleic acid	Releases energy in ATP.
С V	Methyl		н -с-н н	Nonpolar	none	A primary component in gas.
		found	fats	<u>.</u>		

Components	د Examples	Functions
Amino acid monomer (20 types)	 Enzymes Structural proteins Storage proteins Transport proteins Hormones Receptor proteins Motor proteins Defensive proteins 	 Catalyze chemical reactions Provide structural support Store amino acids Transport substances Coordinate organismal responses Receive signals from outside cell Function in cell movement Protect against disease

© 2016 Pearson Education, Inc.

Components	Examples	Functions
Nitrogenous base Phosphate group	DNA: • Sugar = deoxyribose • Nitrogenous bases = C, G, A, T • Usually double-stranded	Stores hereditary information
Nucleotide monomer	RNA: • Sugar = ribose • Nitrogenous bases = C, G, A, U • Usually single-stranded	Various functions in gene expression, including carrying instructions from DNA to ribosomes

Components	Examples	Functions
сн.он	Monosaccharides: glucose, fructose	Fuel; carbon sources that can be converted to other molecules or
н н	Disaccharides: lactose, sucrose	combined into polymers
HOHHOH HOHHOH Monosaccharide monomer	Polysaccharides: • Cellulose (plants) • Starch (plants) • Glycogen (animals) • Chitin (animals and fungi)	 Strengthens plant cell walls Stores glucose for energy Stores glucose for energy Strengthens exoskeletons and fungal cell walls

© 2016 Pearson Education, Inc.

Components	Examples	Functions
Glycerol Fats/Lipid	Triacylglycerols (fats or oils): glycerol + three fatty acids	Important energy source
Head with P 2 fatty acids	Phospholipids: glycerol + phosphate group + two fatty acids	Lipid bilayers of membranes Hydrophobic tails Hydrophilic heads
Steroid backbone	Steroids: four fused rings with attached chemical groups	 Component of cell membranes (cholesterol) Signaling molecules that travel through the body (hormones)

© 2016 Pearson Education, Inc.

Proteomics: Analysis of proteins and sequences

Species	Align	ment				
Human	1	VHL			QR	FFF
Monkey	1	VHLTPEEKNA	VTTLWGKVNV	DEVGGEALGR	LLLVYPWTQR	FFE >>
Gibbon	1	VHLTPEEKSA	VTALWGKVNV	DEVGGEALGR	LLVVYPWTQR	FFF
		J L L L L L L L L L L L L L L L L L L L				-
Human 🛰	→51	PDAVMGNPKV	KAHGKKVLGA	FSDGLAHLDN	LKGTFATLSE	LHC
Monkey_	5 1	PDAVMGNPKV	KAHGKKVLGA	FSDGLNHLDN	LKGTFAQLSE	LHC
Gibbon 🖕	- 51	PDAVMGNPKV	KAHGKKVLGA	FSDGLAHLDN	LKGTFAQLSE	LHC
	•					© 2016 Pe
Human	101	ENFRLLGNVL	VCVLAHHFGK	EFTPPVQAAY	QKVVAGVANA	LAHKYF
Monkey	101	ENFKLLGNVL	VCVLAHHFGK	EFTPQVQAAY	QKVVAGVANA	LAHKYH
Gibbon	101	ENFRLLGNVL	VCVLAHHFGK	EFTPQVQAAY	QKVVAGVANA	LAHKYH

catalyze reactin (speeds it up) Antibody protein rotein from flu virus? 2016 Pearson Education, Inc

Data from Human: http://www.ncbi.nlm.nih.gov/protein/AAA21113.1; rhesus monkey: http://www.ncbi.nlm.nih.gov/ protein/122634; gibbon: http://www.ncbi.nlm.nih.gov/protein/122616

© 2016 Pearson Education, Inc

I. Proteins Proto - first

- "Proteios" = first or primary
- <u>50%</u> dry weight of cells
- Contains: C, H, O, N, S

Myoglobin protein

• Structure (keratin)

Overview of protein functions

Enzymatic proteins

Function: Selective acceleration of chemical reactions Example: Digestive enzymes catalyze the hydrolysis of bonds in food molecules.

Storage proteins

Function: Storage of amino acids Examples: Casein, the protein of milk, is the major source of amino acids for baby mammals. Plants have storage proteins in their seeds. Ovalbumin is the protein of egg white, used as an amino acid source for the developing embryo.

Ovalbumin

Amino acids for embryo

Defensive proteins

Function: Protection against disease Example: Antibodies inactivate and help destroy viruses and bacteria.

Transport proteins

Function: Transport of substances Examples: Hemoglobin, the iron-containing protein of vertebrate blood, transports oxygen from the lungs to other parts of the body. Other proteins transport molecules across membranes, as shown here.

Overview of protein functions

Receptor proteins

Hormonal proteins

Function: Coordination of an organism's Function: Response of cell to chemical activities stimuli Example: Insulin, a hormone secreted by Example: Receptors built into the membrane of a nerve cell detect signaling the pancreas, causes other tissues to take up glucose, thus regulating blood molecules released by other nerve cells. sugar concentration. Receptor protein Insulin Signaling Normal High secreted molecules blood sugar blood sugar Contractile and motor proteins Structural proteins Function: Movement Function: Support Examples: Keratin is the protein of hair, Examples: Motor proteins are responsible for the undulations of cilia and flagella. horns, feathers, and other skin appendages. Insects and spiders use silk fibers to make Actin and myosin proteins are responsible for the contraction of their cocoons and webs, respectively. Collagen and elastin proteins provide a muscles. fibrous framework in animal connective tissues. Actin Myosin Collagen \$200500;200505;20500

Connective

tissue

60 um

© 2016 Pearson Education, Inc.

Muscle tissue

30 µm

Four Levels of Protein Structure

. <u>Primary</u> music notes

- Amino acid (AA) sequence
- 20 different AA's
- peptide bonds link AA's

Amino Acid

- **R** group = side chains
- <u>Properties</u>:
 - hydrophobic
 - hydrophilic
 - ionic (acids & bases)
- "amino": $-NH_2$
- "acid" : -COOH

Peptide Bonds

