T-GB General Biology Week 6 10/10 1) What is the pH if $[H^{\oplus}] = 10^{-6}M^{-7} - (-6)$ 2) what is the pOH if $[OH^{\circ}] = 10^{-2} M \frac{-(-2)}{2}$ 3) what is the [H&] if pH = 8? 10 M What is the $[OH^{\circ}]$ if $POH = 11? 10^{-11}$ PH + POH = 14 = 14 = 14 PH = 3Swhat is the PH if $[OH^{\circ}] = 10^{-5}$ PH = 9 PH = 9 $[OH^{\circ}] = 10^{-5}$ $[H^{\circ}] = 10^{-9}$

Ç-H -H H H-0 Ç . sugar - corbohydrate monoshed Glucose mono saccharide Ho-C-H H 0-6 sugar H H H PH H'C Dehydration 4 synthesis polysacc take away wates saccharide, synthesis-build Build by removing water

Ch. 3b: The Structure and Function of Macromolecules

© 2016 Pearson Education, Inc.

4 different macromolecules

© 2016 Pearson Education, Inc.

Fats or Lipids

Components	Examples	Functions
Giverol 3 fatty acids	Triacylglycerols (fats or oils): glycerol + three fatty acids	Important energy source Solid buffer buffer
Head with P 2 fatty acids	Phospholipids, glycerol + phosphate group + two fatty acids cell membranes	Lipid bilayers of membranes Hydrophobic tails Hydrophilic heads
Steroid backbone	Steroids: four fused rings with attached chemical groups hormone - chemica Messenger S	 Component of cell membranes (cholesterol) Signaling molecules that travel through the body (hormones)
© 2016 Pearson Education, Inc.		

4 macromolecules - prolems, nucleofides, sugars, Fats.

You Must Know

- The role of **dehydration synthesis** in the formation of organic compounds and **hydrolysis** in the digestion of organic compounds.
- How the sequence and subcomponents of the four groups of organic compounds determine their properties.
- The cellular functions of carbs, lipids, proteins, and nucleic acids.
- How changes in these organic molecules would affect their function.

You Must Know

- The 4 structural levels of proteins and how changes at any levels can affect the activity of the protein.
- How proteins reach their final shape (conformation), the denaturing impact that heat and pH can have on protein structure, and how these changes may affect the organism.
- Directionality influences structure and function of polymers, such as nucleic acids (5' and 3' ends) and proteins (amino and carboxyl ends).

Monomers

Small organic
Used for building
blocks of polymers
Connects with
condensation reaction
(dehydration synthesis)

Polymers

•Long molecules of monomers

•With many identical or similar blocks linked by covalent bonds

Macromolecules

Giant molecules

•2 or more polymers bonded together

multiple atoms fastened together through anovelap of electrons (bonds)

Dehydration Synthesis Condensation Reaction	Hydrolysis
Make polymers	Breakdown polymers
Monomers \rightarrow Polymers	Polymers \rightarrow Monomers
$A + B \rightarrow AB$	$AB \rightarrow A + B$
Combines + -> + H ₂ O mino mono poly	$+ H_2 O \longrightarrow + H_2 O$

Dehydration Synthesis

Proteomics: Analysis of proteins and sequences

Data from Human: http://www.ncbi.nlm.nih.gov/protein/AAA21113.1; rhesus monkey: http://www.ncbi.nlm.nih.gov/protein/122634; gibbon: http://www.ncbi.nlm.nih.gov/protein/122616

© 2016 Pearson Education, Inc.

Species

Human

Monkey Gibbon

Human

Monkey

Gibbon

Human

Monkey

Gibbon