

water causes protein folding. Ch. 3b: The Structure and Function of Macromolecules

Proteins - collection of amino acids

Components	Examples	Functions
Amino acid monomer (20 types)	 Enzymes Structural proteins Storage proteins Transport proteins Hormones Receptor proteins Motor proteins Defensive proteins 	 Catalyze chemical reactions Provide structural support Store amino acids Transport substances Coordinate organismal responses Receive signals from outside cell Function in cell movement Protect against disease

© 2016 Pearson Education, Inc.

nomo Nucleic Acids (DNA) Polynocleotides (polymer)

Components	Examples	Functions
Nitrogenous base Phosphate group P-CH20	 Sugar = deoxyribose Nitrogenous bases = C, G, A, T Usually double-stranded 	Stores hereditary information
Nucleotide monomer	RNA: • Sugar = ribose • Nitrogenous bases = C, G, A, U • Usually single-stranded	Various functions in gene expression, including carrying instructions from DNA to ribosomes

© 2016 Pearson Education, Inc.

Carbohydrate - sugar carbon water Polymer -> polysaccharide

Monomer -> monosaccharide

Components	Examples	Functions
CH20)	Monosaccharides: glucose, fructose	Fuel; carbon sources that can be converted to other molecules or
6 H 6 H	Disaccharides: lactose, sucrose	combined into polymers
Monosaccharide monomer	Polysaccharides: Cellulose (plants) Starch (plants) Glycogen (animals) Chitin (animals and fungi)	 Strengthens plant cell walls Stores glucose for energy Stores glucose for energy Strengthens exoskeletons and fungal cell walls

© 2016 Pearson Education, Inc.

Fatties Triacylglycerol > polymer monomer > fatty acid

Components	Examples	Functions
Glycerol futty acid 3 fatty acids	Triacylglycerols (fats or oils): glycerol + three fatty acids	Important energy source
Head with P 2 fatty acids	Phospholipids: glycerol + phosphate group + two fatty acids	Lipid bilayers of membranes Hydrophobic tails Hydrophilic heads
Steroid backbone	Steroids: four fused rings with attached chemical groups	Component of cell membranes (cholesterol) Signaling molecules that travel through the body (hormones)

© 2016 Pearson Education, Inc.

You Must Know

- The role of dehydration synthesis in the formation of organic compounds and hydrolysis in the digestion of organic compounds.
- How the sequence and subcomponents of the four groups of organic compounds determine their properties.
- The cellular functions of carbs, lipids, proteins, and nucleic acids.
- How changes in these organic molecules would affect their function.

You Must Know

- The 4 structural levels of proteins and how changes at any levels can affect the activity of the protein.
- How proteins reach their final shape (conformation), the denaturing impact that heat and pH can have on protein structure, and how these changes may affect the organism.
- Directionality influences structure and function of polymers, such as nucleic acids (5' and 3' ends) and proteins (amino and carboxyl ends).

Monomers

- •Small organic box cars
- Used for building blocks of polymers
- •Connects with condensation reaction (dehydration synthesis)

also called condensation

Polymers tra

- •Long molecules of monomers
- •With many identical or similar blocks linked by covalent bonds

Macromolecules

- •Giant molecules
- •2 or more polymers bonded together

proteins corbohydrates (sugars) fats (lipids) polynucleotide (DNA)

ie. amino acid \rightarrow peptide \rightarrow polypeptide \rightarrow protein

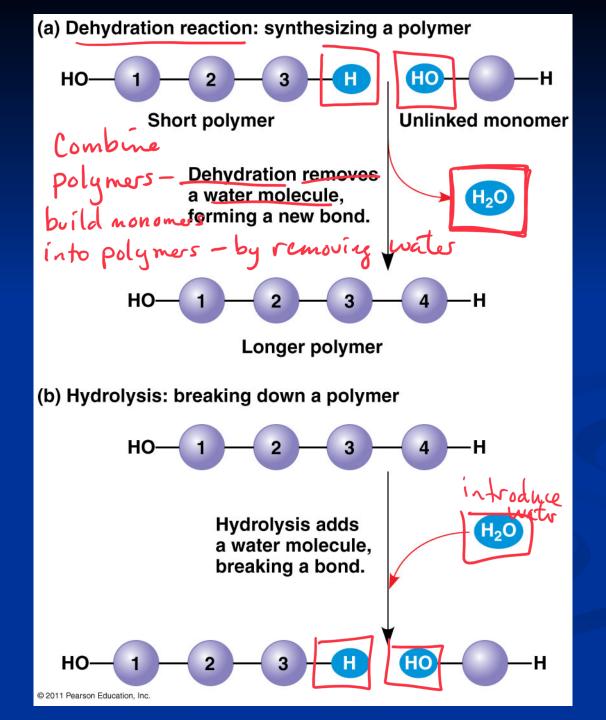
to cut with water

Hydrolysis

water to cut

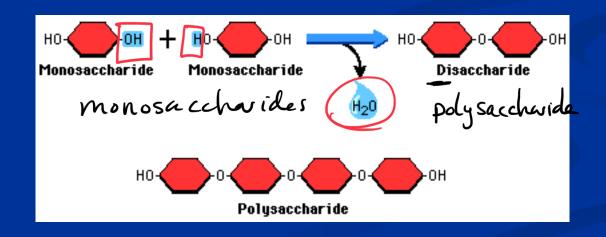
Make polymers

Breakdown polymers

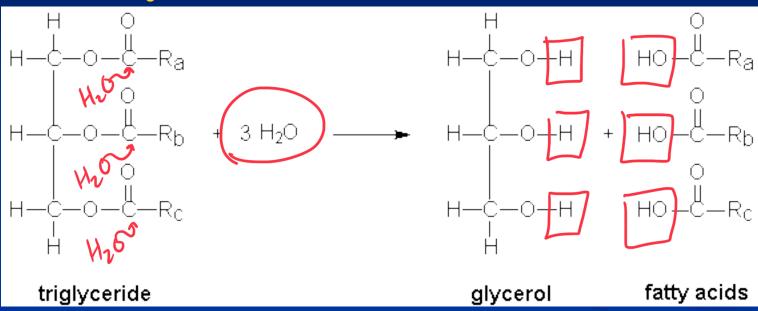

Monomers → Polymers

Polymers Honomers

$$A + B \rightarrow AB$$

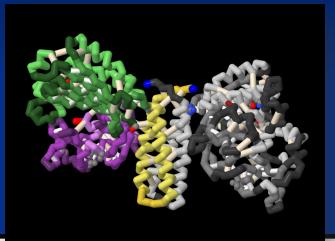

$$AB \rightarrow A + B$$

+ + + H₂O


Dehydration Synthesis

monomer amino acid protein (poly peptide)

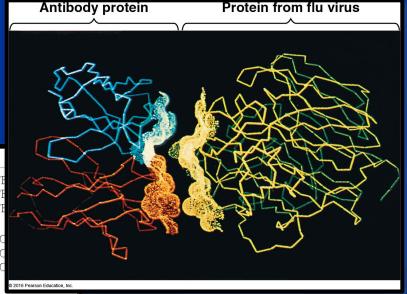
Hydrolysis


Triacylglycrol

Fat Polymer

breaks int monomers

Proteomics: Analysis of proteins and sequences


Species	Align	ment				
Human	1	VHL			QR	FFF
Monkey	1	VHLTPEEKNA	VTTLWGKVNV	DEVGGEALGR	LLLVYPWTQR	FFF >
Gibbon	1	VHLTPEEKSA	VTALWGKVNV	DEVGGEALGR	LLVVYPWTQR	FFF
Human	51	PDAVMGNPKV	KAHGKKVLGA	FSDGLAHLDN	LKGTFATLSE	LHC
Monkey	51	PDAVMGNPKV	KAHGKKVLGA	FSDGLNHLDN	LKGTFAQLSE	LHC
Gibbon	51	PDAVMGNPKV	KAHGKKVLGA	FSDGLAHLDN	LKGTFAQLSE	LHC
						© 2016 Pe
Human	101	ENFRLLGNVL	VCVLAHHFGK	EFTPPVQAAY	QKVVAGVANA	LAHKYE
Monkey	101	ENFKLLGNVL	VCVLAHHFGK	EFTPQVQAAY	QKVVAGVANA	LAHKYE

Data from Human: http://www.ncbi.nlm.nih.gov/protein/AAA21113.1; rhesus monkey: http://www.ncbi.nlm.nih.gov/ protein/122634; gibbon: http://www.ncbi.nlm.nih.gov/protein/122616

101 ENFRLLGNVL VCVLAHHFGK EFTPQVQAAY QKVVAGVANA LAHKYH

© 2016 Pearson Education, Inc

Gibbon

