III. Chemical Bonds Strongest Bonds:

- Covalent: sharing of e Polar: covalent bond between atoms that differ in *electronegativity* Ex H 0
 - Eg. H_20

valence electrons outer shell electrons renctive electrons • <u>Nonpolar</u>: er shared equally; • Eg. O₂ or H₂ • PNS

Covalent bond is a bond where two atoms share valence electrons

© 2016 Pearson Education, Inc.

III. Chemical Bonds

Strongest Bonds: Jonic -> non covalent -> not covalent 2. Ionic: 2 ions (+/-) bond (givers/takers) shiring - Na+Cl- ionic bond is not as strong as a - Affected by environment (eg. water) covalent

Covalent Nacl table salt is a ratio bond Istrength table salt 1 Na: 101 ionic Nacl Water Na⁺ NRCIO 1 oxygen CI_ © 2016 Pearson Education. Inc.

Similar shapes = mimic
 morphine, heroin, opiates mimic endorphin (euphoria, relieve pain)

Properties of Water

Chapter 2b

You Must Know

- The importance of hydrogen bonding to the properties of water.
- Four unique properties of water and how each contributes to life on Earth.
- How to interpret the pH scale.
- How changes in pH can alter biological systems.
- The importance of buffers in biological systems.

4HBs add temperature break hydrogn bonds 3HBs Jadd bonds 5HBs Jadd Boil jato Properties of Water Marine Mater Marine Mater on average, #Hydrogen Bonds 1-2 has 3.4 4 3 hydrogen ice water Vapor bonds (Solid) (liquid) (Gas)

The attraction between two like molecules is **cohesion**.

The attraction between two unlike molecules is **adhesion**.

<u>**Transpiration**</u> = movement of H_2O up plants

 H_2O clings to each other by **<u>cohesion</u>**; cling to xylem tubes by adhesion water can crawl upwards through cohesion (water birding to water) and adhesion (water binding to a sortace)

Capillary Action

BIOFLIX: WATER TRANSPORT IN PLANTS

Water = High specific heat (4.184 J)

- Change temp less when absorbs/loses heat
- Large bodies of water absorb and store more heat
 → warmer coastal areas
- Create stable marine/land environment
- Humans ~65% $H_2O \rightarrow$ stable temp, resist temp. change 1 calorie \rightarrow amount of energy required

Evaporative Cooling

- Water has high heat of vaporization
- Molecules with greatest KE leave as gas bodies warm the sweat and

- Sweat

heat fromour

causes it to Evaporate

- Stable temp in lakes & ponds
- Cool plants
- Human sweat

heat is transferred from our body to the sweat.

3. Expansion Upon Freezing

- Life exists under frozen surface (ponds, lakes, oceans)
- Ice = solid habitat

 (polar bears)
 Ice -> 4 hydrogen bonds ->
 Underse -> ice Floats

4. Water = Solvent of Life

- Solution = liquid, homogeneous mixture
 of 2+ substances
- <u>Solvent</u> = dissolving agent (liquid)
- <u>Solute</u> = dissolved substance
- Water = versatile solvent Kool-Aid Solvent of life

water - solvent

Figure 2.22 A water-soluble protein

H ₂ O Property	Chemical Explanation	Examples of Benefits to Life
Cohesion	•polar •H-bond •like-like	↑gravity plants, trees
Adhesion	•H-bond •unlike-unlike	plants→ xylem blood→veins
Surface Tension	diff. in stretchbreak surfaceH-bond	bugs→water
Specific Heat	•Absorbs & retains E •H-bond	ocean→mod temp →protect marine life
Evaporation	•liquid → gas •KE	Cooling Homeostasis
Universal Substance	•Polarity→ionic •H-bond	Good dissolver solvent