T-G Geometry week 5 10/3
Distance and Midpoint
$(-2,6)$ and $(3,-6)$
$d=$
$\sqrt{(3-(-2))^{2}+(-6-6)^{2}}$

$\sqrt{(3+2)^{2}+(-6-6)^{2}}$
$\sqrt{(5)^{2}+(-12)^{2}}$
$\sqrt{25+144}$

$$
\sqrt{169}=13
$$

Distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(Pythorean)
Midpoint formula: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
(Averages)

$$
\begin{aligned}
& \left(-\frac{2+3}{2}, \frac{6+(-6)}{2}\right) \\
& \left(\frac{1}{2}, \frac{0}{2}\right)=\left(\frac{1}{2}, 0\right)
\end{aligned}
$$

$\sqrt{80} \quad$ Look for perfect squares
$1,4,9,16,25,36,49,64,81,100 \ldots$
$\sqrt{4} \sqrt{20}$

$\sqrt{80}=\sqrt{4} \cdot \sqrt{4} \cdot \sqrt{5}$

$2 \cdot 2 \cdot \sqrt{5}=4 \sqrt{5}$
1.)

Find

Area: L*H

$$
(14 \mathrm{~cm})(3 \mathrm{~cm})=42 \mathrm{~cm}^{2}
$$

Perimeter: $L+L+H+H$

$$
2 L+2 H
$$

2.) Radius

Area: $\pi r^{2}=\pi\left(\frac{6 i n}{}\right)^{2}$ $36 \pi \mathrm{in}^{2}$
Circumference: $2 \pi r$

$$
2 \pi(6 i n)
$$

Area: $\pi\left(\frac{d}{2}\right)^{2}=\pi\left(\frac{22 i n}{2}\right)^{2}$ $\pi(11 i n)^{2}=121 \pi$ in 2
Circumference: πd 121 pi

$$
12 \pi \text { in }
$$

0

$$
\pi=3.1415 \ldots
$$

Perimeter:
$6+10+18+8+12+2$
56 units

Area:
Red: $(2)(6)=12$ units 2
Blue: (8) (18) $=144$ units 2 156 units 2

Area:

$$
\begin{aligned}
& \text { Red: }(8)(12)=96 \text { units }^{2} \\
& \text { Blue: }(6)(10)=+60 \text { units }^{2} \\
& 156 \text { units }^{2}
\end{aligned}
$$

6

$$
\begin{gathered}
\text { whale - missing } \\
\downarrow \\
10(18)(10)-(2)(12) \\
180 \text { units }^{2}-24 \text { units }^{2} \\
156 \text { units }^{2}
\end{gathered}
$$

Not drawn to scale Perimeter ${ }_{3}^{1}$ Area
Perimeter
$6+12+22+12+8+5+$ $8+5$
78 units
Area:
Whole Missing

$$
\begin{aligned}
& (22)(12)-(8)(5) \\
& 264 \text { units }^{2}-40 \text { units }^{2}=224 \text { units }^{2}
\end{aligned}
$$

Geometry Chapter 1 Review

Find a pattern for the following sequences.

2.) $5,8,12,17,23 \ldots$
3.) $60,40,30,25,22.5 \ldots$

Use the illustration to answer the following.
1.) What is the intersection of planes P and Q ?

$$
\overline{A B}
$$

2.) List two pairs of collinear points.
3.) What is the minimum requirement for a plane?

Plane Q $A B C$ P lave P $A B D$

Include one from the illustration. 3 noncolllinear points
1 line and 1 noncolllinarpt.

Use the illustration to answer the following.
1.) Name all of the segments parallel to EH.

$$
\overline{F G}
$$

2.) Name all segments skew to HG.

Include proper arrow format for each of the following.
1.) Draw a line segment featuring points A and B.
2.) Draw line CD.
3.) Draw the ray XY.

If $A X=57$, find the value of each of the following.
1.) $A Q$
2.) x

$$
x=12
$$

$3 x+7+x+2=57$
Find the measure of each of the following angles. $4 x+9=57$
1.) $\angle \mathrm{DBE}$
2.) $\angle D B F$
3.) $\angle D B C$

FInd the distance between the points.
1.) $(2,4)$ and $(-6,7)$
2.) (-1, -5) and (4, 7)

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\sqrt{(-6-2)^{2}+(7-4)^{2}} \\
\sqrt{(-8)^{2}+(3)^{2}} \\
\sqrt{64+9}=\sqrt{73}
\end{gathered}
$$

3.) $(-7,0)$ and $(-3,2)$

Find the midpoint of each segment.

2.) $C(5,-3), D(-9,2)$

Find the circumference of the circle in terms of $\boldsymbol{\pi}$.

$$
\begin{aligned}
& C=\pi d=2 \pi r \\
& 2 \pi(8)=16 \pi \text { units }
\end{aligned}
$$

Find the perimeter and area of a rectangle when:

$$
b=8 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}
$$

FInd the perimeter and area for the following figure.

FInd the area of the circle in terms of $\boldsymbol{\pi}$.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \pi\left(\frac{d}{2}\right)^{2} \\
& \pi\left(\frac{200}{2}\right)^{2} \\
& \pi(100)^{2} \\
& 10000 \pi \text { units }^{2}
\end{aligned}
$$

