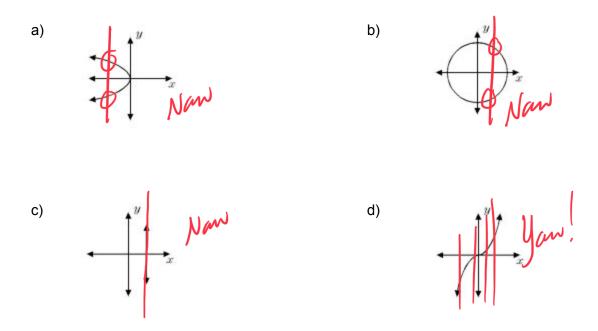


$$2x + 3y \ge 6$$

$$x=0 \quad y=z \quad (0,z)$$

$$2x + 3y \ge 6 \quad (3,0)$$

$$x=3 \quad y=0 \quad (3,0)$$


Algebra 2 Chapter 2 Pre-Test

1.) (8 pts total, 4 pts each) For the following function, determine f(3) and f(-2).

(a)
$$f(x) = x^2 - 4x + 5$$

 $f(3) = (3)^2 - 4(3) + 5$
 $g - 12 + 5$
 $f(-2) = (-2)^2 - 4(-2) + 5$
 $g + 8 + 5$
 $f(-3) = 2$
 $f(-3) = 2$
 $f(-2) = (-2)^2 - 4(-2) + 5$
 $f(-2) = (-2)^2 - 4(-2)^2 - 4(-2)^2 + 5$
 $f(-2) = (-2)^2 - 4(-2)^2 +$

2.) (8 pts total, 4 pts each) Suppose
$$f(x) = 3x - 5$$
 and $g(x) = x^2 + 6$
(a) Find $\frac{g(3)}{f(2)}$. $f(2)$ 2
For what value(s) of x would $\frac{g(x)}{f(x)}$ hot be a function, if any.
 $g(3) = (3)^2 + 6 = 9 + 6 = 15 = 15$
 $f(2) = 3(2) - 5 = 6 - 5 = 1 = 15$
lestricturs: Fraction \rightarrow denominates $\neq 0$
b) Find $f(-1) \cdot g(0)$
For what value(s) of x would $f(x) \cdot g(x)$ not be a function, if any.
 $f(x) \neq 0$
 $3X - 5 \neq 0$
 $+5 + 5 + 5$
 $3X \neq 5$
 $X \neq \frac{5}{3}$
 $X \neq \frac{5}{3}$

3.) (8 pts total, 2 pts each) Which of the following graphs represents a function? Write either "function" or "not a function".

4.) (8 pts total, 4 pts each) Write the equation for the line formed by each slope and point. Include <u>both</u> slope-intercept and point slope forms.

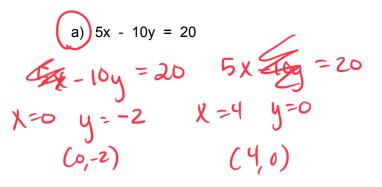
(a)
$$(-2, 4), m = -3$$

(b) $(0, -5), m = \frac{1}{2}$
(c) $y = m x + b$
(c) $y = m x + b$
(c) $y = -2$
(c) $y = -3x - 2$

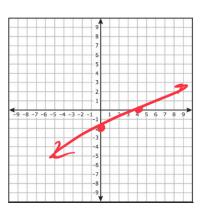
5.) (8 pts total, 4 pts each) Find the slope and intercepts for each of the following lines:

(a)
$$4x + 6y = -12$$

 $y=0$ $4x + 6y = -12$
 $4x + 6y = -12$ $-4x$ $-4x$
 $4x + 6y = -12$ $-4x$ $-4x$
 $\frac{1}{4}x = -12$ $x = -3$ $\frac{6y}{6} = -\frac{4x}{6} -\frac{12}{6}$
(y-int = -2) $\frac{6y}{6} = -\frac{12}{6}$
 $\frac{1}{6}x + \frac{12}{6}x = -3$ $\frac{6y}{6} = -\frac{4x}{6} -\frac{12}{6}$
(y-int = -3) $\frac{6y}{6} = -\frac{12}{6}$
 $\frac{1}{6}x + \frac{12}{6}x = -\frac{12}{3}$
 $\frac{1}{6}x + \frac{12}{6}x = -\frac{12}{3}$


6.) (8 pts total, 4 pts each) Find the slope for each of the following:

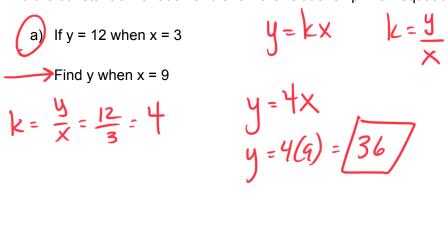
(a) (-5, 3) and (7, -1)


$$slope = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{7 - (-5)} = \frac{-4}{7 + 5} = \frac{-4}{12 + 4} = \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$$

b) (-2, 6) and (4, -9)

7.) (8 pts total, 4 pts each) Graph each of the following equations:

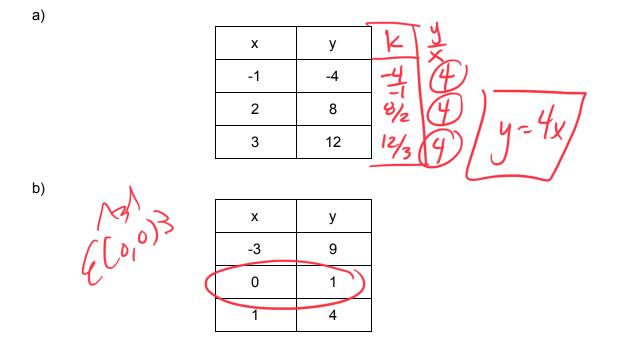
b) 16x + 8y = 48

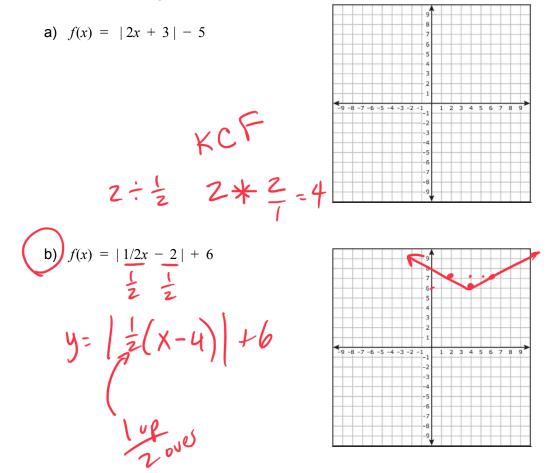


9	
7	
6	
4	
2	
	1 2 2 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -2	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -2 -3	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -2 -3	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -3 -3 -4 -5 -6 -7 -7	1 2 3 4 5 6 7 8 9
-8 -7 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6	

8.) (8 pts total, 4 pts each) Determine the equation for each of the following:

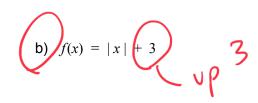
(a) Write the equation for a line through (-2, 7) and perpendicular to
$$y = -2x + 5$$
.
Given $s |_{ope} = -2$
 $perp s |_{ope} = -2$
 $m = \frac{1}{2}$
(-2,7)
b) Write the equation for a line parallel to $y = 3x - 2$ that passes through (1, -3)
 $y = mx + b$
 $y = \frac{1}{2}x + 8$

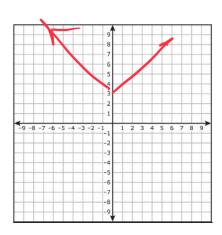

9.) (8 pts total, 4 pts each) Each of the following depicts a direct variation function. For each, find the constant of variation and show the relationship in an equation.

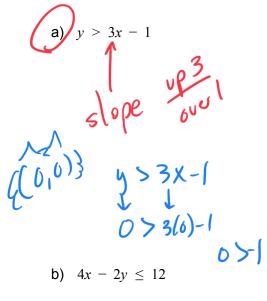

b) If y = -6 when x = 15

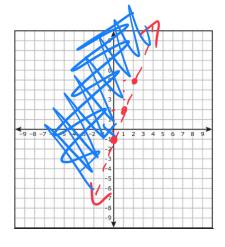
Find x when y = 2

10.) (8 pts total, 4 pts each) For each of the following, determine whether y varies directly with x. If so, find the constant of variation and write the equation.

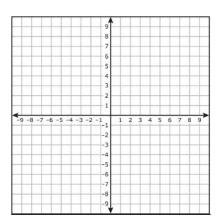



11.) (6 pts total, 3 pts each) For each of the following, find the vertex of the absolute value function. Then graph the function.


12.) (6 pts total, 3 pts each) For each of the following, find the vertex of the absolute value function. Then graph the function.


a)
$$f(x) = |x - 6|$$

 $f(x) = |x - 6|$
 $right b$
 $right - \frac{1}{2} - \frac{1}{2$



13.) (8 pts total, 4 pts each) For each of the following, graph the inequality.

