3.) (5 points each, 15 points total) (3-3) Find the mean, median, and mode of each set.
a) $8,13,12,7,9,12$
b) $21,32,26,30,27$
c) $45,56,52,48,49,56$
4.) (5 points each, 10 points total) (3-4) Use the given formula to solve.

An Uber fare is determined by the following formula:

$$
C=1.25 m+2.75
$$

With C equal to the cost of the fare and m represents the number of miles. How much would each of the following fares be?
(a) $\quad \begin{aligned}C=24) & 1.25(m)+2.75 \\ & 1.25(24)+2.75\end{aligned}$

$$
\begin{aligned}
& 25(24)+2.75 \\
& 30+2.75=32.75
\end{aligned}
$$

b) $m=15$
5.) (5 points each, 55 points total) (3-5 \& 3-6) Solve. While you may use a calculator, you must show all work.
a) $9.36+\mathrm{k}=14.8$
$-9.36 \quad-9.36$

$$
k=14.8-9.36
$$

$$
k=5.44
$$

b) $3.8=n-3.62$
$+3.62+3.62$

$$
n=3.8+3.62
$$

$\begin{array}{r}+3.62 \\ \hline 7.42\end{array}$

$$
n=7.42
$$

C) $x+82.7=63.5$
d) $-4.095+b=18.665$
e) $y-15.48=-22.39$

h) $1.5 \mathrm{~m}=3.03$
i) $\frac{a}{27}=-32.3$
j) $7.2 x=61.2$
k) $277.4=\frac{n}{3.5}$

S-PA Pre-Algebra Sessim 11 7/13
Divisibility Rules
Rule of 2 : If a number ends in $0,2,4,6,8$ it is evenly divisible by 2

Rule of 5: If a number ends in 0,5 it is evenly divisible by 5

Rule of 10: If a number ends in 0 it is evenly divisible by 10

Rule of 3 : If the sum of the digits in a number is evenly divisible by 3, then the number itself is evenly divisible by 3 .

$$
\begin{aligned}
& \text { 18: } 1+8=9
\end{aligned}
$$

$$
\begin{aligned}
& 372: 3+7+2=12^{2} \\
& \int_{\operatorname{din}^{12} \text { by }}{ }^{12}=1 \\
& 87,368,124 \quad 8 \quad 8+7+3+6+8+1+2+4 \\
& 39^{2}: 3+9=12^{2} 12: 1+2=33^{2}
\end{aligned}
$$

Rule of 9: If the sum of the digits in a number is evenly divisible by 9 , then the number is evenly divisible by 9

$$
361,827^{\sqrt{l}:}: \begin{array}{ccccc}
3+6+1 & +8+2+7 \\
& 9 & d & \downarrow & \downarrow \\
& 10 & 18 & 20 & 27
\end{array}
$$

$27: 2+7=9^{\prime}$

$$
7,35 \leftrightarrows \text { what value }
$$

(4)

$$
7+3+5+2+8+0+9+7+9=50
$$

$$
\begin{aligned}
& 50 \\
& 5+4=9
\end{aligned}
$$

Find the factors of 78
$R_{2}: 2 * 39$

$$
7+8=15
$$

If ends in $0,2,4,6,9$, then

$$
\begin{array}{ll}
7+8=15 \\
15: 1+5=6
\end{array} \quad \frac{\frac{-6}{18}}{-18}
$$

RB: $3 * 26$
Factors of 78
If $R 2$ of $R 3$ apply, then it is Factors of
$1 * 78 \quad 3 * 26$ divisible by $6(2 * 3)$

$$
\begin{aligned}
& 1 * 78 \\
& 2 * 39 \quad 6 * 13 \\
& \hline
\end{aligned}
$$

$$
6 * 13
$$

$$
\begin{aligned}
& 788=1,2,3,6,13,26,39,78 \\
& 7+8=15
\end{aligned}
$$

Prime factorization 78
(2)

39

Prime factorization of 78

$$
2 * 3 * 13
$$

Prime Number
Number that has no other factor other than I and itself

$$
2,3,5,7,11,13,17,19,23,29 \ldots
$$

48 Find the factors and Prime Factorization

R3 3*16

$$
4+8=123^{v}
$$

(2) 24
(2) 12

$$
4+8=12 k
$$

(2) 6

$$
\begin{align*}
& 1 * 48,2 * 24,3 * 16,4 * 12, \tag{2}\\
& 6 * 8 \\
& 1,2,3,4,6,8,12,16,24,48
\end{align*}
$$

$$
\left.\frac{1}{2} *^{(2)}\right)^{(3)} 2^{2}=2^{4}
$$

bar
Prime factorization: $\underbrace{2 * 2 * 2 * 2 * 3}_{2^{4}} 2_{2^{4} * 3}$ exponent

