S-G Geometry Session 19 8/7
Parallelogram

True for all parallelograms - Diagonals are bisectors

Rectangle

Diagonals are congruent
2 pairs of isosceles triangles

$a=124^{\circ}$ vertical
$b=56^{\circ}$ sum of interior angles of
$c=62^{\circ}$ isosceles triangle
$d=62^{\circ}$ is isosceles
$e=62^{\circ}$ alternate interior angl les $f=124^{\circ}$ Linear pair

$$
\begin{array}{rlrl}
62 & 180 & =56+F \\
62+62+b & =180 & -56-56 \\
124+b & =180 & 124 & =f \\
-124 & -124 & \\
b & =56^{\circ} &
\end{array}
$$

k

$$
\begin{aligned}
& \overline{H J}=3 x+7 \\
& \overline{I K}=6 x-11 \\
& \overline{H J}=\overline{I K} \\
& 3 x+7=6 x-11 \\
& -3 x \quad-3 x \\
& 7=3 x-11 \\
& +11+11 \\
& \frac{18}{3}=\frac{3 x}{3} \\
& \frac{6}{6}=x
\end{aligned}
$$

Rhombus

4 equal sides
Diagonals are
perpendicular bisectors angle bisectors

$a-90^{\circ}$ per bisector $b-47^{\circ}$ alt. interior angles $c-47^{\circ}$ angle bisector $d-43$ alt. interior angle $e-47^{\circ}$ sum of interior

$$
\begin{aligned}
90+43+e & =180 \\
133+e & =180 \quad e=47 \\
-133 & -133
\end{aligned}
$$

$f-43^{\circ}$ angle bisector

diagonals are bisectors diagonals are congruent
Rhombus
diagonals are perpendicular bisectors diagonals we angle bisectors

Kite
One diagonal is a perpendicular bisector

Isosceles triangle Isosceles triangle
angle bisector

Trapezoid

"Isosceles Trapezoid"
Creates 2 isosceles triangle (top and bottom)
congruent
triangles
SSS on the side

Geometry Chapter 6 Pre-Test

1.) (2.5 pts each, 5 pts total) Name each of the following shapes. Place a check beside each category of shape for which it qualifies.
a) Name of Shape: Parallelogram

This shape also fall under the category of:

roprallelogram
quadrilateral
\square rectangle
\square rhombus
\square square

b) Name of Shape:

This shape also fall under the category of:
\square kite
\square parallelogram
\square quadrilateral
\square rectangle

\square rhombus
\square square
\square trapezoid
2.) (5 pts total) Determine the most exact name for the quadrilateral with the given vertices.
$(-3,-2),(-3,1),(0,2),(0,-1)$
we

3.) (2.5 pts each, 5 pts total) Draw out the indicated shape. Include congruent sides, congruent angles, and congruent diagonal lengths where necessary. Indicate all appropriate 90° angles and parallel lines as well.
a) rhombus

b) parallelogram
4.) (5 pts each, 15 pts total) Find the value of x in each parallelogram.
a) $\begin{aligned} & K U=3 x+3 \\ & U M=4 x-4\end{aligned}$
b)

7.) ($5 \mathrm{pts}, 10 \mathrm{pts}$ total) Use your knowledge of the properties of trapezoids to answer each of the following.

$$
\begin{aligned}
& \text { (a) Find } \angle 1 \& \angle 2 \\
& 180=85+30+42 \\
& 180=115+*^{2} \\
& -115-115 \\
& 65=42
\end{aligned}
$$

b) Find x.

$$
\begin{aligned}
& D F=E G \\
& 4 x=2 x+16
\end{aligned}
$$

8.) ($5 \mathrm{pts}, 10$ pts total) Use your knowledge of the properties of kites to answer each of the following.

$$
\begin{aligned}
& \text { a) Find the indicated angles. } \\
& \angle 1=90^{\circ} \text { per pendicular bisector } \\
& \angle 2=38^{\circ} \\
& \angle 3=50^{\circ} \text { diagrams we bisuctoss }
\end{aligned}
$$

$$
\begin{aligned}
142+42 & =180 \\
-142 & -142
\end{aligned}
$$

$$
\Varangle 2=38^{\circ}
$$

$$
4 x-30=3 x+5
$$

b) Find x and y.

$$
\begin{aligned}
& 4 x-30+y+2 y-20=180^{\circ} \\
& 4(35)-30+3 y-20=180^{\circ} \\
& 140-30+3 y-20=180
\end{aligned}
$$

9.) (5 pts each, 10 pts total) Find the length of variable indicated. $\quad 90+3 y=180 \quad y=30$
a) Find KJ

b) Find x.

10.) (5 pts) Is the point $(2,-2)$ along the line forming a perpendicular bisector of the line segment $A B$ if point A is $(-2,3)$ and point B is $(6,-7)$? Show your work.

11.) (2.5 pts each, 5 pts total) Use your knowledge of triangles to answer each of the following.
a) Order the angles within the triangle from least to greatest:

b) Can a triangle with the lengths $6 \mathrm{~cm}, 7 \mathrm{~cm}$, and 14 cm exist? Clearly state why or why not.
12.) (5 pts) Label each of the following.

C

