5-A2 Algebra 2 Sessim 11 7/13

$$
y=|x-2|+3 r_{\text {right }}+2 \operatorname{up}^{3}
$$

$$
\begin{aligned}
& \left.y<\left(\frac{3}{4}\right) \times-2\right)-\sin ^{5}+\operatorname{pos}^{x} \times y^{\text {in }} \\
& \begin{array}{c}
121 \\
\{(0,0)\}
\end{array} \\
& y<\frac{4}{3} x-2 \\
& 0<4 / 3(b)-2 \\
& 0<-2 \text { fose } \\
& 2 x+3 y \geqslant 6
\end{aligned}
$$

Graph intercepts

$$
\begin{aligned}
& \begin{array}{c}
\frac{2 y}{3}+\frac{3 y}{3} \quad \frac{2 x}{2}+\frac{3}{2}=\frac{6}{2} \\
x=3
\end{array} \\
& y=2 \quad x=3 \\
& \left\{\begin{aligned}
& 2 x+3 y \geq 6 \\
&-2 x
\end{aligned}\right\} \\
& \left.\begin{array}{l}
\frac{3 y}{3} \geq \frac{-2 x}{3}+\frac{6}{3}
\end{array} \xlongequal\left[-2 x \geq-\frac{2}{3} x+2\right)\right]{ }=\begin{array}{l}
2 x+3 y \geqslant 6 \\
\\
\\
2(0)+3(0) 26 \\
\text { solse } 0 \geqslant 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{2} x-3 \\
& y=\frac{5}{2} x+1
\end{aligned}
$$

$$
\begin{aligned}
y & =\frac{1}{2} x-3 \\
f(x) & =\frac{1}{2} x-3 \\
f(-2) & =\frac{1}{2}(-2)-3 \\
& =-1-3 \\
& =-4 \\
y & =\frac{5}{2} x+1 \\
& (-2,-4) \\
f(x) & =\frac{5}{2} x+1 \\
f(-2) & =\frac{5}{2}(-2)+1 \\
& \\
& -5=-1 \\
& =-4
\end{aligned}
$$

Systems of Equations

Solution for both equations

$$
\begin{aligned}
& \left.\begin{array}{l}
y=4 x+3 \\
y=4 x-1
\end{array}\right\} \rho \\
& 4 x+3=4 x-1 \\
& -3 \quad-3 \\
& 4 x=4 x-4 \\
& -4 x-4 x \\
& 0=-4 \\
& y=-x-3 \text { slope=-1 } \\
& y=-5 x+1 \\
& \begin{array}{ll}
-x-3= & -5 x+1 \\
+x & +x
\end{array} \\
& +x+x \\
& \begin{array}{l}
-3=-4 x+1 \\
-1
\end{array} \\
& \frac{-4}{-4}=\frac{-4 x}{-4} \\
& 1=x \\
& +x-3=-4 x+1 \quad y=-x-3 \\
& -1 \quad x=1 \downarrow \\
& \begin{array}{l}
y=-1-3 \\
y=-4
\end{array}
\end{aligned}
$$

Algebra 2 Chapter 2 Pre-Test
1.) (8 pts total, 4 pts each) For the following function, determine $f(3)$ and $f(-2)$.
a) $f(x)=x^{2}-4 x+5$
b) $f(x)=\frac{5 x-6}{2 x}$
2.) (8 pts total, 4 pts each) Suppose $f(x)=3 x-5$ and $g(x)=x^{2}+6$
a) Find $\frac{g(3)}{f(2)} \quad \frac{(3)^{2}+6}{3(2)-5}=$
For what value (s) of x would bot be function, if any.

Denominator cannot equal ρ

$$
f(x)=3 x-5
$$

$$
\begin{array}{r}
3 x-5 \neq 0 \\
+5+5 \\
2 v \neq 5
\end{array} x \neq \frac{5}{3}
$$

b) Find $f(-1) \cdot g(0)$

For what values) of x would $f(x) \cdot g(x)$ not be a function, if any.

$$
(3 x-5)\left(x^{2}+1\right)
$$

No denominator all x 's we finctum

