Pre-Calculus Chapter 2 Pre-Test

1.) (2.5 pts each, 5 pts total) Determine whether each of the following is a polynomial. If so, identify the degree
a) $f(x)=2 x^{5}-3 x^{3}+7 x^{2}-9 x$
b) $f(x)=5 x^{3}+12 x^{2}+\sqrt{9 x}$
2.) (5 pts) Graph the quadratic function, which is given in standard form

$$
f(x)=(x+2)^{2}-4
$$

3.) (10 pts) Rewrite the quadratic function in standard form by completing the square. Then graph.
$f(x)=2 x^{2}+8 x+5$

4.) (5 pts) Find all of the real zeros (and their state of multiplicities) for the polynomial.

$$
f(x)=6 x^{2}(x-2)^{4}(x+7)^{3}
$$

5.) (10 pts) Find a polynomial of minimum degree that has the given zeros.

$$
-2,0,1,3
$$

6.) (10 pts) For the polynomial function: (a) list each real zero and its multiplicity; (b) determine whether the graph touches or crosses at each x-intercept; (c) find the y-intercept; (d) sketch-ish the graph.

$$
f(x)=x^{5}-4 x^{3}
$$

7.) (7.5 pts each, 15 pts total) Divide the polynomials by either long division or synthetic division.
a) $\left(x^{4}-2 x^{3}-7 x^{2}+8 x+12\right) \div(x+2)$
b) $\left(x^{5}+4 x^{4}+3 x^{2}+19 x+28\right) \div(x+4)$
8.) (10 pts) For the function:

$$
x^{4}+8 x^{3}+9 x^{2}-38 x-40
$$

a) Find all potential zeros.
b) Find the number of possible positive zeros.
c) Find the number of possible negative zeros.
d) Attempt to find $\mathbf{3}$ zeros using long division or synthetic division. Show all work.
9.) (10 pts) Find a polynomial of minimum degree with the following zeros:

$$
-4,3-i, 3+i
$$

10.) (10 pts) Given a zero of the polynomial, determine all other zeros (real or complex) and write the polynomial as a product of linear factors.

$$
x^{4}+x^{3}-8 x^{2}+4 x-48, \text { zero }=2 i
$$

11.) (5 pts each, 10 pts total) Find the domain and asymptotes (vertical and horizontal) of each of the following rational functions.
a) $\frac{x^{2}-4}{3 x^{2}-8 x+4}$
b) $\frac{4 x^{2}-3 x+6}{8 x^{3}-16 x^{2}+8 x}$

