Pre-Calculus Chapter 3 Pre-Test

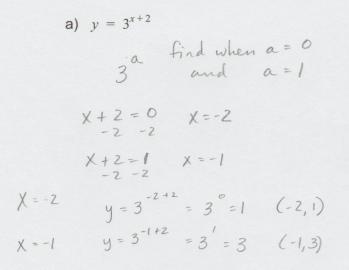
1.) (2 pts each, 6 pts total) Evaluate exactly. Do not use decimals.

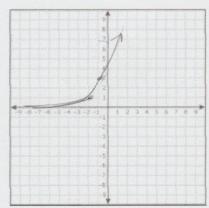
a) 7⁻²

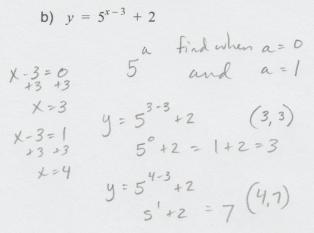
1 72

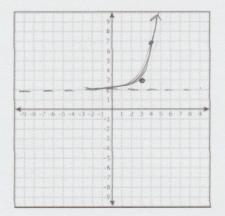
b) 8^{2/3}

$$\left(\sqrt[3]{8}\right)^2 = (2)^2 = 4$$


c)
$$(\frac{1}{4})^{5/2}$$
 $(\sqrt{\frac{1}{4}})^{5} = (\frac{1}{2})^{5} = \frac{1^{5}}{2^{5}} = \frac{1}{3^{2}}$

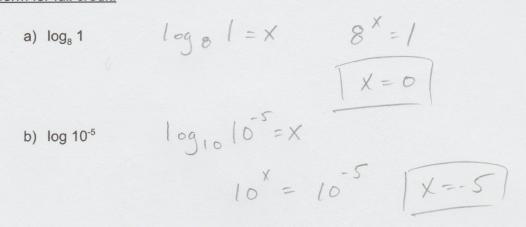

2.) (2 pts each, 4 pts total) Evaluate each function.


a)
$$f(x) = 4^x$$
, $x = 3$
 $f(3) = 4^3 = \boxed{64}$


b)
$$g(x) = 10^{x+4}, x = -2$$

3.) (5 pts each, 10 pts total) Graph each function. <u>Identify at least two points on the line</u> (please use points indicated in class).

- 4.) (2 pts each, 4 pts total) Write each logarithmic equation in its equivalent exponential form.
 - a) $Log_6 216 = 3$ 3 = 216


b)
$$\log_b x = a$$
 $b^a = \chi$

5.) (2 pts each, 4 pts total) Write each exponential equation in its equivalent logarithmic form.

a)
$$4^7 = 16384$$
 | 094 | 6384 = 7

b)
$$0.001 = 10^{-3}$$
 | $0 g_{10} 0.001 = -3$
or
| $0 g_{0.001} = -3$

6.) (2 pts each, 4 pts total) Evaluate the logarithms exactly. <u>Show conversion to exponential</u> form for full credit.

7.) (8 pts total) State the domain of the logarithmic function. Please show work (do not simply graph).

$$f(x) = \log_3\left(x - 2\right)$$

Even if
$$a \rightarrow -\infty$$
 $\log_3(x-2) = a$
 $3^{-\infty} = \frac{1}{3^{\infty}} = 0$ $3^{\alpha} = x-2$
 3^{α} must be
greater than 0 $x-270$
therefore $+2$
 $x > 2$

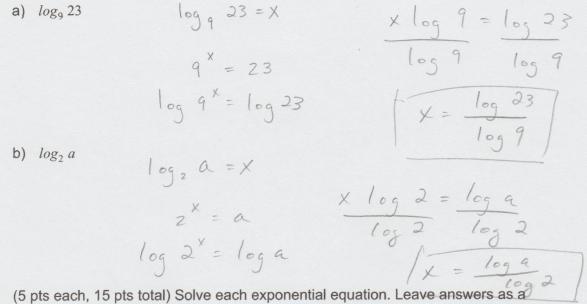
8.) (2.5 pts each, 5 pts total) Apply the properties of logarithms to simplify each expression.

a)
$$8^{3\log_8 5}$$

 $8^{3\log_8 5} = X$
 $\log_8 X = 3\log_8 5$
 $\log_8 X = \log_8 5^3 - X = 5^3 = /125$
b) $e^{\ln(x^2-4)} = Z$
 $\ln (x^2-4) = A$
 $\ln Z = \ln (x^2-4)$
 $x^2-4 = 2$
 $+4 +4$
 $x = \pm \sqrt{6}$

9.) (5 pts each, 10 pts total) Write each expression as a sum or difference of logarithms.

a)
$$\log_b(\frac{x^2y^2z^3}{a^4})$$
 $2\log_b X + 7\log_b Y - 3\log_b Z - 4\log_a$


b)
$$log_b (\frac{x^2+2x-3}{x^2-6x+8}) = log_b (x^2+2x-3) - log_b (x^2-6x+8)$$

 $log_b (x+3)(x-1) - log_b (x-4)(x-2)$
 $log_b (x+3) + log_b (x-1) - log_b (x-4) - log_b (x-2)$

10.) (5 pts each, 10 pts total) Write each expression as a single logarithm.

a)
$$6 \log_b a + 2 \log_b c - 3 \log_b d$$

 $\log_b \left(\frac{a c}{d^3} \right)$

b)
$$\frac{1}{2}\log e - 3\log f - 2\log h$$

 $\frac{e^{\frac{1}{2}}}{f^3h^2}$ or \sqrt{e}
 f^3h^2

(5 pts each, 10 pts total) Evaluate each logarithm using change-of-base formula. 11.)

12.) fraction if necessary (no decimals).

a)
$$log (3x + 4) = 2$$

 $log_{10} (3x + 4) = 2$
 $log^2 = 3x + 4$
 $loo = 3x + 4$
 -4
 $\frac{96}{3} = \frac{3x}{3}$
 $\boxed{x = 32}$

b) $log_2(x-2) + log_2(x+4) = 4$

$$log_{2} (x-2)(x+4) = 4 \qquad x^{2} + 2x - 24 = 0$$

$$2^{4} = (x-2)(x+4) \qquad (x+6)(x-4) = 0$$

$$2^{4} = x^{2} + 2x - 8 \qquad x+6 = 0 \qquad x-4 = 0$$

$$2^{4} = x^{2} + 2x - 8 \qquad x+6 = 0 \qquad x-4 = 0$$

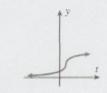
$$-6 \qquad -6 \qquad +4 \qquad +4 \qquad +4$$

$$l_{6} = x^{2} + 2x - 8 \qquad x=4$$

$$-16 \qquad x=-6 \qquad x=4$$

c)
$$ln(x) + ln(x + 2) - ln(3x) = 6$$

 $ln \frac{x+2}{3} = 6$
 $ln \frac{x+2}{3} = 6$
 $e^{.6} = \frac{x+2}{3}$
 $3e^{.6} = x + 2$
 -2
 $x = 3e^{.6} - 2$


13.) (1 pts each, 10 pts total) Complete the table by including the corresponding letter.

Graph Name	Model	Graph
Gaussian distribution	С	h
Logistic growth	d	9
Exponential growth	a	j
Logarithmic	e	f
Exponential decay	b	i d

a)
$$f(t) = ce^{kt} \ k > 0$$

c) $f(x) = ce^{\frac{(x-a)^2}{k}}$
e) $f(t) = a + c \log t$
f)
h)
j)

b) $f(t) = ce^{-kt} k > 0$ d) $f(t) = \frac{a}{1 + ce^{-kt}}$

g)

