\qquad
\qquad

Reteaching 6-1 Ratios and Unit Rates

One store has 6-packs of juice for $\$.90$. Another store has 8 -packs of the same size juice cartons for $\$ 1.12$. Which is the better buy?
Find the unit rates.
6-pack: $\frac{\text { price } \rightarrow}{\text { number } \rightarrow} \frac{\$.90}{6}=\$.15 /$ carton
8 -pack: $\begin{aligned} & \text { price } \rightarrow \\ & \text { number } \rightarrow\end{aligned} \frac{\$ 1.12}{8}=\$.14 /$ carton

6-pack
\$0.90

8-pack
\$1.12

The 8-pack has the lowest unit price.

Find each unit rate.

1. $\$ 91$ in 14 h
2. 372 mi in 6 h
3. 570 gal in 60 min
\qquad
4. 592 words in 8 min
5. A 12 fl oz bottle of shampoo costs $\$ 1.08$ at Discount Mart. A 20 fl oz bottle of the same shampoo costs $\$ 2.20$ at Super Store. Find each unit rate and determine which is the better buy.

12 fl oz bottle: \qquad

20 fl oz bottle: \qquad

Better buy:
8. A school bus travels 53.3 mi on 6.5 gal of gas on its way to a museum for a field trip. On the return trip it takes the freeway and travels 53.2 mi on 5.6 gal of gas. Find the gas mileages of each trip and determine which is greater.
To the museum: \qquad

Returning from the museum: \qquad
Better mileage: \qquad
\qquad
\qquad
\qquad

Practice 6-1 Ratios and Unit Rates

Find each unit rate.

1. 78 mi on 3 gal \qquad
2. $\$ 52.50$ in 7 h \qquad
3. 416 mi in 8 h
4. 9 bull's eyes in 117 throws

Write each ratio as a fraction in simplest form.
5. 7th-grade boys to 8 th-grade boys \qquad
6. 7th-grade girls to 7th-grade boys \qquad

	Boys	Girls
7th Grade	26	34
8th Grade	30	22

7. 7 th graders to 8 th graders
8. boys to girls \qquad
9. girls to all students \qquad
Write three different ratios for each model.
10.

11.

12.

Write each ratio as a fraction in simplest form.
13. $7: 12$ \qquad
15. $10: 45$ \qquad
17. 36 is to 60 \qquad
19. 9 out of 21 \qquad
21. 24 is to 18
14. 3 is to 6
16. 32 out of 40
18. 13 out of 14
20. $45: 63$
22. 15 out of 60 \qquad
\qquad
\qquad
\qquad

Reteaching 6-2 Proportions

Solve $\frac{x}{6}=\frac{10}{4}$

Method 1: Multiplication
Property of Equality
$\frac{x}{6}=\frac{10}{4}$
$\frac{x}{6} \cdot 6=\frac{10}{4} \cdot 6$ Multiply each side by 6 .
$x=\frac{60}{4} \quad$ Simplify.
$x=15$

Method 2: cross products
$\frac{x}{6}<\frac{10}{4}$
$4 x=60$ Find the cross products.
$\frac{4 x}{4}=\frac{60}{4} \quad$ Divide each side by 4 .
$x=15 \quad$ Simplify.

Solve each proportion. When necessary, round to the nearest hundredth.

1. $\frac{6}{p}=\frac{18}{42}$
2. $\frac{12}{21}=\frac{x}{14}$
3. $\frac{y}{9}=\frac{26}{6}$
4. $\frac{x}{9}=\frac{7}{12}$
5. $\frac{63}{t}=\frac{14}{16}$
6. $\frac{28}{15}=\frac{y}{25}$
7. $\frac{7}{20}=\frac{e}{70}$
8. $\frac{8}{3}=\frac{40}{k}$
9. $\frac{m}{54}=\frac{5}{12}$
10. $\frac{8}{w}=\frac{5}{24}$
11. $\frac{63}{18}=\frac{14}{z}$
12. $\frac{a}{70}=\frac{2}{5}$
13. $\frac{5}{13}=\frac{20}{r}$
14. $\frac{6}{t}=\frac{7}{56}$
15. $\frac{c}{21}=\frac{6}{20}$
16. $\frac{10}{e}=\frac{15}{27}$
\qquad
\qquad

Practice 6-2 Proportions

Write a proportion for each phrase. Then solve. When necessary, round to the nearest hundredth.

1. $420 \mathrm{ft}^{2}$ painted in $36 \mathrm{~min} ; f \mathrm{ft}^{2}$ painted in 30 min
2. 75 points scored in 6 games; p points scored in 4 games
3. 6 apples for $\$ 1.00 ; 15$ apples for d dollars

Tell whether each pair of ratios forms a proportion.

4. $\frac{3}{4}$ and $\frac{9}{12}$
5. $\frac{25}{40}$ and $\frac{5}{8}$ \qquad
6. $\frac{8}{12}$ and $\frac{14}{21}$ \qquad 7. $\frac{13}{15}$ and $\frac{4}{5}$ \qquad
7. $\frac{4}{5}$ and $\frac{5}{6}$ \qquad 9. $\frac{49}{21}$ and $\frac{28}{12}$ \qquad

Solve each proportion. Where necessary, round to the nearest tenth.
10. $\frac{3}{5}=\frac{15}{x}$ \qquad 11. $\frac{15}{30}=\frac{n}{34} \quad \square$
12. $\frac{h}{36}=\frac{21}{27}$ \qquad 13. $\frac{11}{6}=\frac{f}{60}$ \qquad
14. $\frac{26}{15}=\frac{130}{m}$ \qquad 15. $\frac{36}{j}=\frac{7}{20}$ \qquad
16. $\frac{r}{23}=\frac{17}{34}$ \qquad
18. At Discount Copy, 12 copies cost $\$ 0.66$. Melissa needs 56 copies. How much should they cost?
19. You estimate that you can do 12 math problems in 45 min . How long should it take you to do 20 math problems?
\qquad
\qquad
\qquad
\qquad

Reteaching 6-3 Similar Figures and Scale Drawings

Similar triangles have the same shape but not necessarily the same size. In the figures, $\triangle A B C$ is similar to $\triangle D E F$.
The symbol \sim means "is similar to." $\triangle A B C \sim \triangle D E F$.
The lengths of the sides of similar triangles are always proportional to each other.
Find $E F$.
Substitute into $\frac{A C}{D F}=\frac{B C}{E F}$.
$\frac{8}{4}=\frac{10}{x} \quad$ Write a proportion.
$8 x=40 \quad$ Find the cross products.
$\frac{8 x}{8}=\frac{40}{8} \quad$ Divide each side by 8 .

$x=5 \quad$ Simplify.

Use the properties of similar triangles to calculate the side lengths in each problem.

1. $\triangle M N P \sim \triangle S T W$.
a. Complete: $\frac{M N}{S T}=\xrightarrow{M P} ; \frac{M N}{S T}=\frac{}{T W}$
b. Substitute the correct lengths in the above proportions and solve.

$$
\frac{20}{15}=\frac{36}{S W} ; \square=
$$

$S W=$ \qquad $N P=$ \qquad
2. $\triangle D K L \sim \triangle R E V$.
$D K=$ \qquad
$R V=$ \qquad

3. $\triangle A N F \sim \triangle K G S$.

$$
\begin{aligned}
& A N= \\
& G S= \\
& \hline
\end{aligned}
$$

\qquad

Practice 6-3 Similar Figures and Scale Drawings

The scale of a map is $\frac{1}{2} \mathrm{in} .: 8 \mathrm{mi}$. Find the actual distance for each map distance.

1. 2 in .
2. 5 in .
3. $3 \frac{1}{2} \mathrm{in}$.
4. 10 in .
5. 8 in .
6. $7 \frac{1}{4} \mathrm{in}$.

Each pair of figures is similar. Find the missing length. Round to the nearest tenth where necessary.
7.

$x=$ \qquad
8.

$p=$ \qquad
9.

10.

$n=$ \qquad

$$
e \approx \quad f \approx
$$

11. A meter stick casts a shadow 1.4 m long at the same time a flagpole casts a shadow 7.7 m long. The triangle formed by the meterstick and its shadow is similar to the triangle formed by the flagpole and its shadow. How tall is the flagpole?

A scale drawing has a scale of $\frac{1}{4} \mathrm{in}$. : 6 ft . Find the length on the drawing for each actual length.
12. 18 ft
13. 66 ft
14. 204 ft
\qquad

Reteaching 6-4 Probability

Suppose you select a letter at random from the words MIDDLE SCHOOL. Find $P(\mathrm{~L})$ and $P($ not L$)$.
First determine the number of possible outcomes. There are 12 letters in the two words, so there are 12 possible outcomes when you select a letter at random. Next determine the number of favorable outcomes for $P(\mathrm{~L})$. There are two L's.
Thus, $P(\mathrm{~L})=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}=\frac{2}{12}=\frac{1}{6}$
You can find $P($ not L$)$ several ways. Since there are 12 possible outcomes and 2 are $\mathrm{L}, 12-2=10$ are not L .
Thus, $P($ not L$)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}=\frac{10}{12}=\frac{5}{6}$
Also $P(\operatorname{not} \mathrm{~L})=1-P(\mathrm{~L})$
$=1-\frac{1}{6}=\frac{5}{6}$

A drawer contains 6 red socks, 4 blue socks, and 14 white socks. A sock is pulled from the drawer at random. Find the probability for each case.

1. $P(\mathrm{red})$ \qquad 2. P (blue)
2. P (red or white) \qquad 4. P (red, white, or blue)
3. P (green) \qquad

Suppose you spin a spinner that is equally likely to land on any one of the numbers from 1 to 20. Find the probability for each event.
7. $P(17)$
9. $P($ a number divisible by 5$)$
11. $P($ a number with a 1 in it $)$
13. $P($ a number less than 6$)$
15. P (a number that is not less than 17)
8. P (an odd number)
10. $P(26)$
12. P (a prime number $)$
14. P (a number)
16. $P($ a number divisible by 3 or 4$)$
\qquad
\qquad

Practice 6-4 Probability

Find each probability for choosing a letter at random from the word PROBABILITY.

1. $P(B)$ \qquad 2. $P(P)$ \qquad
2. $P(\mathrm{~A}$ or I$)$ \qquad 4. $P(\operatorname{not} P)$ \qquad

A child is chosen at random from the Erb and Smith families. Find the odds in favor of each of the following being chosen.
5. a girl
7. an Erb girl
6. an Erb
8. a Smith girl
10. a Smith

	Erb family	Smith family
Girls	2	5
Boys	4	3

9. not a Smith boy

A box contains 7 red, 14 yellow, 21 green, 42 blue, and 84 purple marbles.
A marble is drawn at random from the box. Find each probability.
11. $P(\mathrm{red})$
12. P (yellow)
13. P (green or blue)
14. P (purple, yellow, or red)
15. $\mathrm{P}($ not green $)$
16. P (not purple, yellow, or red)

Find the odds in favor of each selection when a marble is chosen at random from the box described above.
17. blue \qquad 18. purple
20. not green or blue
22. not purple or yellow \qquad
\qquad
\qquad
\qquad

Reteaching 6-5 Fractions, Decimals, and Percents

Write $\frac{7}{8}$ as a percent and 64% as a fraction in lowest terms.
Divide $7 \div 8$.
0.875
$8 \longdiv { 7 . 0 0 0 }$
$\frac{64}{60}$

56
40

40
64% means 64 parts per 100.

$$
\begin{aligned}
64 \% & =\frac{64}{100} \\
& =\frac{2^{4}}{2^{2} \cdot 5^{2}} \\
& =\frac{16}{25}
\end{aligned}
$$

$\frac{7}{8}=0.875$
$0.875=87.5 \%$
Thus $\frac{7}{8}=87.5 \%$.

$$
\text { Thus } 64 \%=\frac{16}{25}
$$

Write each fraction as a percent.

1. $\frac{7}{10}$ \qquad
2. $\frac{11}{20}$ \qquad
3. $\frac{3}{5}$ \qquad
4. $\frac{17}{25}$ \qquad
5. $\frac{1}{5}$ \qquad
6. $\frac{39}{100}$
\qquad
7. $\frac{1}{20}$ \qquad
8. $\frac{13}{50}$
\qquad
9. $\frac{5}{8}$ \qquad
10. $\frac{3}{16}$
\qquad

Write each percent as a fraction in simplest terms.
11. 15% \qquad 12. 12.5% \qquad
13. 76% \qquad 14. 14% \qquad
15. 60% \qquad 16. 97% \qquad
17. 25% \qquad 18. 30% \qquad
19. 82% \qquad 20. 68.75% \qquad

[^0]\qquad
\qquad

Practice 6-5 Fractions, Decimals, and Percents

Write each decimal or fraction as a percent. Round to the nearest tenth of a percent where necessary.

1. 0.16 \qquad
2. 0.72 \qquad
3. $\frac{24}{25}$ \qquad 4. $\frac{31}{40}$ \qquad
4. $\frac{111}{200}$ \qquad 6. $\frac{403}{1,000}$ \qquad
5. 3.04 \qquad
6. 5.009 \qquad
7. 0.0004 \qquad
8. $\frac{40}{13}$
\qquad
9. $\frac{4}{7}$ \qquad
10. $\frac{57}{99}$
\qquad

Write each percent as a decimal.
\qquad 14. 12.4% \qquad
15. 145% \qquad 16. 0.07% \qquad
17. $7 \frac{1}{2} \%$ \qquad 18. $15 \frac{1}{4} \%$ \qquad
Write each percent as a fraction or mixed number in simplest form.
19. 60% \qquad 20. 5% \qquad
21. 35% \qquad 22. 32% \qquad
23. 140% \qquad 24. 0.8% \qquad
Use $>,<$, or $=$ to complete each statement.
25. 0.7 \square 7\%
26. 80% \square $7 \frac{4}{5}$
27. $\frac{1}{3}$ \square 33%
28. In the United States in 1990, about one person in twenty was 75 years old or older. Write this fraction as a percent.
\qquad
\qquad

Reteaching 6-6 Proportions and Percents

What percent of 98 is 24.5 ?
You can solve percent problems by writing and solving a proportion.
Any percent problem of the form $x \%$ of a is b can be written as:

$$
\begin{array}{ll}
\frac{x}{100}=\frac{b}{a} & \\
\text { so } \frac{x}{100}=\frac{24.5}{98} & \text { Write a proportion. } \\
98 x=2,450 & \text { Write cross products } \\
\frac{98 x}{98}=\frac{2,450}{98} & \text { Divide each side by } 98 \\
x=25 & \text { Simplify. }
\end{array}
$$

24.5 is 25% of 98 .

Write a proportion. Then solve. Where necessary, round to the nearest tenth or tenth of a percent.

1. What percent of 75 is 60 ?
2. What percent is 17 of 25 ?
3. What percent of 144 is 126 ?
4. Find 24% of 120 .
5. Find 260% of 30 .
6. Find 38% of 32 .
7. 40% of x is 28 . What is x ?
8. 75% of p is 12 . What is p ?
9. 13% of r is 209 . What is r ?
10. What percent of 68 is 51 ?
11. What percent of 51 is 65 ?
12. What percent of 95 is 25 ?
13. Find 75% of 76 .
14. Find $27 \frac{1}{2} \%$ of 96 .
15. Find 17% of 85 .
16. 9% of k is 27 . What is k ?
17. 0.9% of h is 276 . What is h ?
18. 68% of j is 44 . What is j ?
\qquad
\qquad

Practice 6-6 Proportions and Percents

Write a proportion. Then solve. Where necessary, round to the nearest tenth or tenth of a percent.

1. $62 \frac{1}{2} \%$ of t is 35 . What is t ? \qquad
2. 38% of n is 33.44 . What is n ? \qquad
3. 120% of y is 42 . What is y ? \qquad
4. 300% of m is 600 . What is m ? \qquad
5. 1.5% of h is 12 . What is h ? \qquad
6. What percent of 40 is 12 ? \qquad
7. What percent of 48 is 18 ? \qquad
8. What percent is 54 of 60 ? \qquad
9. What percent is 39 of 50 ? \qquad
10. Find 80% of 25 . \qquad
11. Find 150% of 74 . \qquad
12. Find 44% of 375 . \qquad
13. Find 65% of 180 . \qquad
14. The Eagles won 70% of the 40 games that they played. How many games did they win?
15. Thirty-five of 40 students surveyed said that they favored recycling. What percent of those surveyed favored recycling?
16. Candidate Carson received 2,310 votes, 55% of the total. How many total votes were cast?
\qquad
\qquad
\qquad
\qquad

Reteaching 6-7 Percents and Equations

You can solve percent problems by writing and solving an equation.
8 is 16% of what?
$8=0.16 \cdot n \quad$ Write an equation. Write the percent as a decimal.
$\frac{8}{0.16}=\frac{0.16 n}{0.16} \quad$ Divide each side by 0.16 .
$50=n \quad$ Simplify
8 is 16% of 50 .

Write and solve an equation. Where necessary, round to the nearest tenth or tenth of a percent.

1. What percent is 84 of 60 ?
2. What percent is 22 of 33 ?
3. What percent is 18 of 48 ?
4. Find 37.5% of 104 .
5. Find 68% of 150 .
6. Find 12.5% of 56 .
7. 95% of h is 60 . What is h ?
8. 30% of n is 42 . What is n ?
9. 25% of y is 96 . What is y ?
\qquad
\qquad
\qquad
\qquad

Practice 6-7 Percents and Equations

Write and solve an equation. Where necessary, round to the nearest tenth or tenth of a percent.

1. What percent of 25 is 17 ? \qquad
2. What percent is 10 of 8 ? \qquad
3. What percent is 63 of 84 ? \qquad
4. What percent is 3 of 600 ? \qquad
5. Find 45% of 60 . \qquad
6. Find 325% of 52 . \qquad
7. Find $66 \frac{2}{3} \%$ of 87 . \qquad
8. Find 1% of 3,620 . \qquad
9. $62 \frac{1}{2} \%$ of x is 5 . What is x ? \qquad
10. 300% of k is 42 . What is k ? \qquad
11. $33 \frac{1}{3} \%$ of p is 19 . What is p ? \qquad
12. 70% of c is 49 . What is c ? \qquad
13. 15% of n is 1,050 . What is n ? \qquad
14. 38% of y is 494. What is y ? \qquad
15. A camera regularly priced at $\$ 295$ was placed on sale at $\$ 236$. What percent of the regular price was the sale price?
\qquad
16. Nine hundred thirty-six students, 65% of the entire student body, attended the football game. Find the size of the student body.
\qquad
\qquad
\qquad

Reteaching 6-8 Percent of Change

Find the percent of decrease from 85 to 60 .
Find the amount of decrease.

$$
\begin{aligned}
& 85-60=25 \\
& \text { percent of decrease }=\frac{\text { amount of decrease }}{\text { original amount }} \\
&=\frac{25}{85} \\
& \approx 0.294=29.4 \%
\end{aligned}
$$

The percent of decrease is about 29.4%

Find each percent of increase. Where necessary, round to the nearest tenth of a percent.

1. 40 is increased to 45 .
2. 33 is increased to 55 .
3. 15 is increased to 34 .
4. 11 is increased to 88 .
5. 72 is increased to 117 .
6. 28 is increased to 49 .
7. 35 is increased to 49 .
8. 48 is increased to 132 .

Find each percent of decrease. Where necessary, round to the nearest tenth of a percent.

9. 60 is decreased to 15 .
10. 56 is decreased to 35 .
11. 140 is decreased to 77 .
12. 96 is decreased to 64 .
\qquad
\qquad
13. 99 is decreased to 69 .
14. 83 is decreased to 0 .
15. 475 is decreased to 152 .
\qquad

Practice 6-8 Percent of Change

Find each percent of change. Round to the nearest tenth of a percent. Tell whether the change is an increase or a decrease.

1. 24 to 21
2. 100 to 113 \qquad
3. 63 to 105 \qquad
4. 64 to 80
5. 50 to 41
6. 42 to 168 \qquad
7. 80 to 24 \qquad 8. 200 to 158 \qquad
8. 127 to 84 \qquad
9. 44 to 22 \qquad
10. 10 to 100 \qquad
11. 10 to 50 \qquad
12. 80 to 100 \qquad
13. 19 to 9 \qquad
14. 88 to 26 \qquad
15. Mark weighed 110 pounds last year. He weighs 119 pounds this year. What is the percent of increase in his weight, to the nearest tenth of a percent?
16. Susan had $\$ 140$ in her savings account last month. She added $\$ 20$ this month and earned $\$.50$ interest. What is the percent of increase in the amount in her savings account to the nearest tenth of a percent?
17. The population density of California was 151.4 people per square mile in 1980. By 1990 it had increased to 190.8 people per square mile. Find the percent increase to the nearest percent.
\qquad
\qquad
\qquad

Reteaching 6-9 Markup and Discount

A store pays $\$ 8$ for a basketball. The markup is 60%. Later, they discount the basketball 25%. Find the original selling price and the sale price of the basketball.

Method 1

The markup is 60% of the cost.
Find 60% of $\$ 8$.
$0.6(8)=\$ 4.80$
Store's cost + markup $=$ selling price
$8+4.80=\$ 12.80$
The original selling price is $\$ 12.80$.
The discount is 25% of the original selling price.
Find 25% of $\$ 12.80$
$0.25(12.80)=3.20$
original price - discount $=$ sale price
$12.80-3.20-9.60$
The sale price is $\$ 9.60$

Method 2

The selling price equals 100% of the cost plus 60% (the markup) of the cost, or 160%.
Find 160% of $\$ 8$.
$1.60(8)=\$ 12.80$
The original selling price is $\$ 12.80$.

The sale price is 100% of the original price minus 25% of the original price, or 75%.
Find 75\% of \$12.80
$0.75(12.80)=\$ 9.60$
The sale price is $\$ 9.60$

Complete each table. Where necessary, round to the nearest cent.

Cost	Markup	Selling Price	
1.	$\$ 17$	50%	
2.	$\$ 48$	70%	
3.	$\$ 110$	85%	
4.	$\$ 87$	65%	
5.	$\$ 335$	35%	

6.

Original Selling Price	Discount	Sale Price
$\$ 19$	25%	
$\$ 136$	15%	
$\$ 849$	30%	
$\$ 29.99$	40%	
$\$ 2.59$	35%	

\qquad Class \qquad Date \qquad

Practice 6-9 Markup and Discount

Find each sale price. Round to the nearest cent where necessary.
1.
2.
3.
4.
5.
6.

Regular Price	Percent of Discount	Sale Price
$\$ 46$	25%	
$\$ 35.45$	15%	
$\$ 174$	40%	
$\$ 1.40$	30%	
$\$ 87$	50%	
$\$ 675$	20%	

Find each selling price. Round to the nearest cent where necessary.
7.

Cost	Percent Markup	Selling Price
$\$ 5.50$	75%	
$\$ 25$	50%	
$\$ 170$	85%	
$\$ 159.99$	70%	
$\$ 12.65$	90%	
$\$ 739$	20%	

\qquad Class \qquad Date \qquad

Reteaching 6-10 Make a Table

A saving account pays 4\% interest per year. You deposit $\$ 1,000$ and then do not deposit or withdraw any money. How much will be in the account at the end of 5 years?
A table can help you solve the problem.

Year	Beginning Balance	Interest	Ending Balance
1	$\$ 1,000$	$\$ 40$	$\$ 1,040$
2	$\$ 1,040$	$\$ 41.60$	$\$ 1,081.60$
3	$\$ 1,081.60$	$\$ 43.26$	$\$ 1,124.86$
4	$\$ 1,124.86$	$\$ 44.99$	$\$ 1,169.85$
5	$\$ 1,169.85$	$\$ 46.79$	$\$ 1,216.64$

The first year, your interest is 4% of $\$ 1,000$ or $\$ 40$. At the end of the first year and the beginning of the second year, you have $\$ 1,040$. The second year, your interest is 4% of $\$ 1,040$ or $\$ 41.60$. If you finish the table, you find you have $\$ 1,216.64$ at the end of 5 years.

A savings account pays 5\% interest per year. You deposit $\$ 1,800$ and then do not deposit or withdraw any money. Complete the table to find out how much will be in the account at the end of 10 years.

	Year	Beginning Balance	Interest	Ending Balance
1.	1	\$1,800		
2.	2			
3.	3			
4.	4			
5.	5			
6.	6			
7.	7			
8.	8			
9.	9			
10.	10			

Amount: \qquad
\qquad
\qquad Date

Practice 6-10 Make a Table

Make a table to solve each problem.

1. A car was worth $\$ 12,500$ in 1998 . Its value depreciates, or decreases, 15% per year. Find its value in 2002.

Year	1998	1999	2000	2001	2002
Car's Value	$\$ 12,500$				

2. Marcus spent $\$ 105$ on 6 items at a sale. Videotapes were on sale for $\$ 15$ each and music CDs were on sale for $\$ 20$ each. How many of each item did Marcus buy?

Number of Videotapes	1	2	3	4	5
Number of CD's	5	4	3	2	1
Total Cost					

3. Karina likes to mix either apple, orange, or grape juice with either lemon-lime soft drink or sparkling water to make a fizz. How many different fizzes can she make?
\qquad
4. How many ways can you have 25 cents in change?
5. The deer population of a state park has increased 8% a year for the last 4 years. If there are 308 deer in the park this year, find how large the population was 4 years ago by completing the table.

Year		1	2	3	4
Deer Population					308

6. How many different sandwiches can you make from 3 types of bread, 2 types of cheese, and 2 types of meat? Assume that only one type of each item is used per sandwich.
7. A bus leaves a station at 8:00 A.m. and averages $30 \mathrm{mi} / \mathrm{h}$. Another bus leaves the same station following the same route two hours after the first and averages $50 \mathrm{mi} / \mathrm{h}$. When will the second bus catch up with the first bus?

[^0]: Pre-Algebra Chapter 6
 Lesson 6-5 Reteaching

