MTH-PT Trigonometry Sesscon $6 \quad 2 / 12$

$$
\begin{aligned}
& \begin{aligned}
17^{10 u-4}-8= & 71 \\
+8 & +8
\end{aligned} \\
& \log 17^{10 v-4}=\log _{9} 9 \\
& \sqrt{\log 17^{10 v-4}}=\log 79 \\
& \frac{(\operatorname{lov}-4)(\log 17)}{\log 17}=\frac{\log 79}{\log 17} \\
& \frac{10 v}{10}=\frac{\frac{\log 79}{\log 17}+4}{10} \\
& \begin{array}{rl}
10 v-4 & =\frac{\log 79}{\log 17} \\
+4 & v= \\
\hline \frac{\log 79}{\log 17}+4 \\
10
\end{array} \\
& \begin{aligned}
11^{2-7 x}-6= & 54 \\
+6 & +6
\end{aligned} \\
& \log 11^{2-7 x}=60 \\
& 2-7 x=\frac{\log _{-2} 60}{\log 11}-2 \\
& \frac{(2-7 x)(\log 11)}{\log 11}=\frac{\log 60}{\log 11} \\
& \frac{-7 x}{-7}=\frac{\log 60}{\log 11}-2 \\
& x=\frac{\frac{\log 60}{\log 11}-2}{-7}
\end{aligned}
$$

Pre-Calculus Chapter 3 Pre-Test
1.) (2 pts each, 6 pts total) Evaluate exactly. Do not use decimals.
(a) 7^{-2} bottom $=\frac{1}{7^{2}}=\frac{1}{49}$

(2) $\cos ^{20}\left(\frac{1}{4}\right)^{\frac{5}{2}}$

$$
\left(4^{(\sqrt[4]{n})^{5}}\right)^{5}\left(\frac{1}{2}\right)^{5}=\frac{5}{c^{5}} \sqrt{\frac{1}{2}}
$$

2.) (2 pts each, 4 pts total) Evaluate each function.
a) $f(x)=4^{x}, x=3$

$$
4^{3}=64
$$

3.) (5 pts each, 10 pts total) Graph each function. Identify at least two points on the line (please use points indicated in class).

$$
y=3=3
$$

asyop po te $x=-2$

$$
x+2=0
$$

$$
\begin{array}{ll}
x+2=0 \\
-2 & (-2,1)
\end{array}
$$

b) $y=\min ^{x-3} \downarrow \begin{aligned} & x+2=1 \quad(-1,3) \\ & -2-2\end{aligned}$

$$
x=-1
$$

$$
\begin{array}{cc}
x-3=0 & x-3=1 \\
+3+3 & +3+3 \\
x=3 & x=4 \\
5^{3-3}+2(3,3) & x=4 \\
5^{0}+2 & 5^{4-3}+2 \\
1+2=3 & 5^{1}+2 \\
5+2=7
\end{array}
$$

4.) (2 pts each, 4 pts total) Write each logarithmic equation in its equivalent exponential form.
\log is an exponent
a)

$$
\begin{gathered}
\log _{6} 216=3 \\
6^{3}=216
\end{gathered}
$$

b)

$$
\begin{aligned}
& \log _{b} x=a \\
& b^{a}=x
\end{aligned}
$$

5.) (2 pts each, 4 pts total) Write each exponential equation in its equivalent logarithmic form.

$$
\text { (a) } 4 ^ { 7 } = 1 6 3 8 4 \longdiv { \operatorname { l o g } _ { 4 } 1 6 3 8 4 = 7 }
$$

b) $0.001=10^{-3}$
$10^{-3}=0.001 \quad \log _{10} 0.001=-3$
6.) (2 pts each, 4 pts total) Evaluate the logarithms exactly. Show conversion to exponential form for full credit.
a) $\log _{8} 1$
b) $\log 10^{-5}$
7.) 8 pts total) State the domain of the logarithmic function. Please show work (do not simply graph).

$$
f(x)=\log _{3}(x-2)
$$

