MTH-PC College Algebra	i Sessin	n 32	1/18
$x^{2} - 5x + 6$	zeros	when num to ze	verator gores
$2x^2 + 6x$	Domain ->	denomin	ator goes to
End behavior projection as X-+ 0	\sim	holes both num	erator and
top heavy -> -> -> 0		denomin Zero	ator goes to $\frac{0}{0}$
great personality - ra Co	tio of efficients	- 3	<u>-z * - 3</u> = 6
$x^2 - 5x + 6$	$= \underbrace{\begin{pmatrix} X - Z \end{pmatrix}}_{=}$	$(\chi - 3)$	$\frac{-2}{2} + \frac{-3}{3} = -5$
$2x^2 + 6x$	2x (X	+3)	0 (3)
	X = 0 $\overline{2}$ $\overline{2}$	$\chi_{+5}=0$ -3 -: $\chi_{-5}=-3$	3 XZ
ZL505: 2,3	X=0	(X ² -5	$\chi + 0$ $\chi + 0$ $\chi^2 = -$
asymptotes X=0,	X=-3 X~~~	2 22	y bx z

Top Heavy $2\frac{x^{3}}{\sqrt{2}} = 2x^{3-2} = 2x \quad 2(\infty)$ χ^2 Bottom Heavy $\frac{2}{3} \frac{x^{3}}{x^{4}} = \frac{2}{3} \frac{x^{3-4}}{x^{4}} = \frac{2}{3} \frac{x^{-1}}{x^{-1}} = \frac{2}{3x} = \frac{2}{3\infty}$

Zeros: 4 X-X-12 holes: -3 4x +12 vertical asymptotes none (X-4)(X+3) ceros: (4) (3) (horizontal) 4(x+3) $X\neq 3$ -3 x2) X-12 4X+12

Pre-Calculus Chapter 2 Pre-Test

1.) (2.5 pts each, 5 pts total) Determine whether each of the following is a polynomial. If so, identify the degree

a)
$$f(x) = 2x^{5} - 3x^{3} + 7x^{2} - 9x^{4}$$
 yes
5 th degree
b) $f(x) = 5x^{3} + 12x^{2} + \sqrt{9x}$ No
9 x 4

2.) (5 pts) Graph the quadratic function, which is given in standard form

3.) (10 pts) Rewrite the quadratic function in standard form by completing the square. Then graph.

$$f(x) = 2x^{2} + 8x + 5$$

$$f(x) = 2x^{2} + 8x + 5$$

$$(2x^{2} + 8x) + 5$$

$$(2x^{2} + 8x)$$

rtex:(-2,-3)

4.) (5 pts) Find all of the real zeros (and their state of multiplicities) for the polynomial.

5.) (10 pts) Find a polynomial of minimum degree that has the given zeros.

6.) (10 pts) For the polynomial function: (a) list each real zero and its multiplicity; (b) determine whether the graph touches or crosses at each x-intercept; (c) find the y-intercept; (d) sketch-ish the graph.

7.) (7.5 pts each, 15 pts total) Divide the polynomials by either long division or synthetic division.

a) $(x^4 - 2x^3 - 7x^2 + 8x + 12) \div (x + 2)$

 $.4x^{2} + x + 6/$ X³

$$3x + 4 = 0$$

-4 -4
 $3x = -4$
 $3x = -4$
 $x = -4$
 $x = -4$

- 8.) (10 pts) For the function:
- 10 pts) For the function: (a) Find all potential zeros. $\pm 1 \pm 2 \pm 4 \pm 5 \pm 8 \pm 10 \pm 20 \pm 40$ $\pm 48x^3 + 9x^2 38x 40$ p = 1 = 40 f = 40 f = 40 f = 40
 - b) Find the number of possible *positive* zeros.

c) Find the number of possible *negative* zeros.

$$\begin{array}{c} X^{4} + 8x^{3} + 9x^{2} - 38x - 40 \\ + \\ X^{4} - 8x^{3} + 9x^{2} + 38x - 40 \\ \hline \end{array} \qquad \boxed{3,1}$$

d) Attempt to find 3 zeros using long division or synthetic division. Show all work.

attempt find 1

9.) (10 pts) Find a polynomial of minimum degree with the following zeros:

10.) (10 pts) Given a zero of the polynomial, determine all other zeros (real or complex) and write the polynomial as a product of linear factors.

 $(X+2i)(X-2i) = X^2+Y$ -2i

$$\chi^{2} + 0\chi + 4 \chi^{4} + \chi^{2} - 8\chi^{2} + 4\chi - 48$$

11.) (5 pts each, 10 pts total) Find the domain and asymptotes (vertical and horizontal) of each of the following rational functions.

a)
$$\frac{x^2-4}{3x^2-8x+4}$$

b) $\frac{4x^2 - 3x + 6}{8x^3 - 16x^2 + 8x}$