MTH-PC College Algebra Session 15 10/30
1.) Find the equation for a line parallel to $y=-\frac{3}{4} \times(+7$ that goes through $(4,-8)$. parallel lines have equal slope $y=m x+b$
Given slope: $-\frac{3}{4}$ slope needed $-\frac{3}{4} \quad y=\frac{-3}{4} x-5$

$$
\begin{array}{ll}
y=m x+b & -8=\left(-\frac{3}{4}\right)(4)+b \\
y=-\frac{3}{4} x-5 & -8=-\frac{12}{4}+b \quad b=-5
\end{array}
$$

2.) Find the equation for a line perpendicular
$t_{0} 4 x-2 y=10$ that goes through $(-2,6)$.
$4 x-2 y=10$
$-4 x$$\quad$-4x$\quad$ slope $=-\frac{A}{B}$
$-4 x$
Standard form

$$
\frac{-2 y}{-2}=\frac{-4 x}{-2}+\frac{10}{-2}
$$

$$
y=2 x-5
$$

$$
\begin{aligned}
& A x+B y=C \\
& \uparrow \\
& y= m x+b \\
& \downarrow \downarrow \downarrow \\
& 6=\left(-\frac{1}{2}\right)(-2)+b
\end{aligned}
$$

Given slope: 2
Needed slope $\left(-\frac{1}{2}\right)=m$
opposite inverse

$$
\begin{aligned}
& 6=1+b \quad y=m x+b \\
& -1=-1 \\
& 5=b \quad y=-\frac{1}{2} x+5
\end{aligned}
$$

$$
2 \rightarrow-2 \rightarrow-\frac{1}{2}
$$

3.) A varies directly with b and d and varies inversely with c.

$$
A \propto \frac{b d}{c} \quad A=\frac{k b d}{c} \quad A=k \frac{b d}{c}
$$

4.) X varies directly with v and p. $x=30$ when $v=2$ and $p=5$ Find the equation.

$$
x=3 v p
$$

$$
\begin{aligned}
& x \propto v p \\
& x=k v p \\
& \downarrow \\
& 30=k(2)(5) \\
& \frac{30}{10}=\frac{10 k}{10} \quad k=3
\end{aligned}
$$

Pre-Calculus Chapter 0.5 Practice Test
1.) (8 pts tot, 4 pts each) Calculate the distance between the given points.
a) $(-4,5)$ and $(-9,-7)$
b) $(0,-7)$ and $(-4,-5)$

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \quad \sqrt{(-9-(-4))^{2}+(-7-5)^{2}} \\
& \sqrt{(-9+4)^{2}+(-12)^{2}} \\
& \quad \sqrt{(-5)^{2}+(-12)^{2}} \\
& \quad \sqrt{25+144}=\sqrt{169}=13
\end{aligned}
$$

2.) (8 pts tot, 4 pts each) Find the midpoint of the segment joining the two points.
a) $(-3,-1)$ and $(-7,2)$
b) $(-5,12)$ and $(7,16)$

$$
\left(\frac{-7+(-3)}{2}, \frac{2+(-1)}{2}\right)
$$

$$
\left(-\frac{10}{2}, \frac{1}{2}\right)
$$

3.) (8 pts tot, 4 pts each) Find the x - and y-intercepts and graph the corresponding lines.

$$
y=2
$$

$$
y=-3(0)+2
$$

(b) $y=x^{2}+6 x-27 x$-int $\rightarrow+2 \quad \begin{aligned} & 0=-3 x \\ & \frac{-2}{-3}=\frac{-3 x}{-3} \\ & \frac{-2}{-3}\end{aligned}$

$$
\begin{array}{lr}
0=x^{2}+6 x-27 \\
0=(x+9)(x-3) & y \text {-int: } x=0 \\
y=\frac{(0)^{2}+6(0)-27}{\text { int: }-93}
\end{array}
$$

4.) (8 pts tot, 4 pts each) Write the equation of the circle in stancaldionm.
(a) Center ($6,-7$)
$r=8$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-6)^{2}+(y+7)^{2}=64
\end{aligned}
$$

b) Center (-4, -1)

$$
r=3 \sqrt{5}
$$

5.) (8 pts tot, 4 pts each) State the center and radius of the circle with the given equation.

b) $(x+1)^{2}+(y+2)^{2}=8$
6.) (8 pts tot, 4 pts each) Find the center and radius of the circle.
a) $x^{2}+y^{2}+8 x+2 y-28=0$
1.) 2020 it

7.) (8 pts tot, 4 pts each) Find the slope of the line that passes through the given point.
a) (11, -3) and (-2, 6)

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-(-3)}{-2-11}
$$

b) $(-1,-4)$ and $(4,6)$

$$
=\frac{6+3}{-2-11}-\frac{9}{13}
$$

8.) (8 pts tot, 4 pts each) Write the equation in slope-intercept form. Identify the slope and the y-intercept.
a) $3 x-5 y=15$
$-3 x \quad-3 x$

$$
\text { slope: } 3 / 5
$$

$$
\frac{-5 y}{-5}=\frac{-3 x}{-5}+\frac{15}{-5}
$$

$$
y \text {-in t:-3 }
$$

b) $8=4 x-16 y$
9.) (8 pts tot, 4 pts each) Write the equation of the line in both point-slope and slope-intercept form.
a) Slope: $m=-6$-intercept: $(0,9)$

b) Slope: m = 0 y-intercept: $(0,-4)$
10.) (8 pts tot, 4 pts each) Write the equation of the line that passes through the given point. Express the equation in slope-intercept form.
a) Slope: $m=-1 / 3$ $(-6,9)$

$$
\begin{aligned}
& y=m x+b \\
& \downarrow \downarrow \\
& q=\left(-\frac{1}{3}\right)(-6)+b
\end{aligned}
$$

$$
\begin{aligned}
& y=m x+b \\
& y=-\frac{1}{3} x+7
\end{aligned}
$$

$$
\begin{aligned}
& 9=2+b \\
& -2-2
\end{aligned}
$$

$$
7=b
$$

b) Slope: $\mathrm{m}=4$ $(-2,8)$
11.) (8 pts tot, 4 pts each) Find the equation of the line that passes through the given point and also satisfies the additional piece of information.

12.) (4 pts each) Write an equation that describes the variation.
a) P varies inversely with r^{2}
13.) (8 pts tot, 4 pts each) Write an equation that describes the variation.
a) y varies inversely with both x and $z ; y=32, x=4, z=0.05$
b) V varies directly with $\mathrm{h} ; \mathrm{V}=18, \mathrm{~h}=8$

