\qquad ID: 1

Assignment

Date \qquad Period

Solve each equation.

1) $4^{a}=2^{6}$
2) $3^{n+3}=3^{-2 n-1}$
3) $25^{3 m+1}=125^{2 m+2}$
4) $2^{-3 n}=2^{-3 n}$
5) $8^{3 n-2}=16^{-2 n}$
6) $5^{2-3 x}=125$
7) $5^{3 x}=5^{x-3}$
8) $4^{-3 b}=\frac{1}{64}$
9) $625^{-2 b}=\left(\frac{1}{5}\right)^{-b+1}$
10) $625^{-n-2}=25^{3 n}$
11) $16^{-3 k}=64^{-2 k}$
12) $64^{2-3 n}=\frac{1}{16}$
13) $27^{-2 x}=9^{3 x+3}$
14) $216^{3 b}=36^{-b-2}$
15) $4^{n-1}=16$
16) $625^{3 v+2}=25$
17) $2^{-n}=4$
18) $5^{-n}=25$
19) $64^{3 k-2}=16^{-3 k}$
20) $36^{k-3}=216^{3 k}$

Sketch the graph of each function.

21) $y=\frac{1}{4} \cdot\left(\frac{1}{6}\right)^{x}$

22) $y=5 \cdot\left(\frac{1}{2}\right)^{x}$

23) $y=5 \cdot 2^{x}$

24) $y=3 \cdot 2^{x}$

25) $y=\frac{1}{4} \cdot\left(\frac{1}{8}\right)^{x}$

26) $y=2 \cdot\left(\frac{1}{3}\right)^{x}$

27) $y=\frac{1}{2} \cdot 2^{x}$

28) $y=\frac{1}{3} \cdot\left(\frac{1}{2}\right)^{x}$

29) $y=2 \cdot 3^{x}$

30) $y=3 \cdot\left(\frac{1}{2}\right)^{x}$

31) $y=\frac{1}{4} \cdot\left(\frac{1}{2}\right)^{x}$

32) $y=\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{x}$

33) $y=4 \cdot\left(\frac{1}{2}\right)^{x}$

34) $y=\frac{1}{4} \cdot\left(\frac{1}{7}\right)^{x}$

35) $y=2 \cdot 2^{x}$

36) $y=\frac{1}{3} \cdot\left(\frac{1}{7}\right)^{x}$

37) $y=4 \cdot 2^{x}$

38) $y=\frac{1}{3} \cdot 2^{x}$

39) Trevon invests $\$ 3,485$ in a savings account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 6 years?
40) Ming invests $\$ 8,615$ in a savings account with a fixed annual interest rate of 2% compounded continuously. What will the account balance be after 11 years?
41) $y=\frac{1}{4} \cdot 5^{x}$

42) $y=\frac{1}{4} \cdot 4^{x}$

43) Kristin invests $\$ 5,123$ in a savings account with a fixed annual interest rate of 9% compounded continuously. What will the account balance be after 6 years?
44) Shanice invests $\$ 8,369$ in a retirement account with a fixed annual interest rate of 5% compounded continuously. What will the account balance be after 18 years?
45) Mike invests $\$ 4,938$ in a savings account with a fixed annual interest rate of 4% compounded continuously. What will the account balance be after 10 years?
46) Perry invests $\$ 4,314$ in a retirement account with a fixed annual interest rate of 7% compounded continuously. What will the account balance be after 14 years?
47) Julio invests $\$ 4,967$ in a savings account with a fixed annual interest rate of 9% compounded continuously. What will the account balance be after 8 years?
48) Pranav invests $\$ 4,590$ in a savings account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 8 years?
49) Darryl invests $\$ 7,701$ in a retirement account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 15 years?
50) Emily invests $\$ 3,782$ in a retirement account with a fixed annual interest rate of 6\% compounded continuously. What will the account balance be after 16 years?
51) Ndiba invests $\$ 6,390$ in a savings account with a fixed annual interest rate of 7\% compounded continuously. What will the account balance be after 10 years?
52) Julio invests $\$ 1,319$ in a retirement account with a fixed annual interest rate of 7% compounded continuously. What will the account balance be after 13 years?

Rewrite each equation in exponential form.

61) $\log _{17} 289=2$
62) Matt invests $\$ 1,426$ in a retirement account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 20 years?
63) Ndiba invests $\$ 5,851$ in a retirement account with a fixed annual interest rate of 7% compounded continuously. What will the account balance be after 17 years?
64) Stephanie invests $\$ 5,076$ in a retirement account with a fixed annual interest rate of 5% compounded continuously. What will the account balance be after 19 years?
65) Jose invests $\$ 7,760$ in a retirement account with a fixed annual interest rate of 3% compounded continuously. What will the account balance be after 17 years?
66) Jimmy invests $\$ 3,011$ in a retirement account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 14 years?
67) Eduardo invests $\$ 8,892$ in a savings account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 9 years?
68) Emily invests $\$ 4,162$ in a savings account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 7 years?
69) Sumalee invests $\$ 6,237$ in a savings account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 4 years?
70) $\log _{11} 121=2$
71) $\log _{\frac{1}{15}} \frac{1}{225}=2$
72) $\log _{361} 19=\frac{1}{2}$
73) $\log _{8} 64=2$
74) $\log _{9} 3=\frac{1}{2}$
75) $\log _{4} 16=2$
76) $\log _{13} \frac{1}{169}=-2$
77) $\log _{289} 17=\frac{1}{2}$
78) $\log _{15} 225=2$
79) $\log _{18} 324=2$
80) $\log _{9} 81=2$
81) $\log _{\frac{1}{5}} \frac{1}{25}=2$
82) $\log _{15} \frac{1}{225}=-2$
83) $\log _{12} 144=2$
84) $\log _{5} 125=3$
85) $\log _{13} 1=0$
86) $\log _{\frac{1}{5}} \frac{1}{625}=4$
87) $\log _{125} 25=\frac{2}{3}$
88) $\log _{8} 8=1$

Rewrite each equation in logarithmic form.
81) $20^{2}=400$
82) $\left(\frac{1}{18}\right)^{2}=\frac{1}{324}$
83) $5^{3}=125$
84) $16^{\frac{1}{2}}=4$
85) $12^{1}=12$
86) $9^{\frac{1}{2}}=3$
87) $18^{2}=324$
88) $2^{3}=8$
89) $\left(\frac{1}{12}\right)^{2}=\frac{1}{144}$
91) $289^{\frac{1}{2}}=17$
93) $13^{0}=1$
95) $3^{3}=27$
97) $19^{2}=361$
99) $13^{2}=169$
90) $15^{2}=225$
92) $15^{1}=15$
94) $14^{2}=196$
96) $9^{2}=81$
98) $2^{4}=16$
100) $8^{2}=64$
\qquad ID: 1

Assignment

Date \qquad Period

Solve each equation.

1) $4^{a}=2^{6}$
$\{3\}$
2) $25^{3 m+1}=125^{2 m+2}$
3) $3^{n+3}=3^{-2 n-1}\left\{-\frac{4}{3}\right\}$

No solution.
5) $8^{3 n-2}=16^{-2 n}\left\{\frac{6}{17}\right\}$
7) $5^{3 x}=5^{x-3}\left\{-\frac{3}{2}\right\}$
9) $625^{-2 b}=\left(\frac{1}{5}\right)^{-b+1}\left\{\frac{1}{9}\right\}$
4) $2^{-3 n}=2^{-3 n}$
\{ All real numbers. \}
6) $5^{2-3 x}=125\left\{-\frac{1}{3}\right\}$
8) $4^{-3 b}=\frac{1}{64}$
\{1\}
10) $625^{-n-2}=25^{3 n}\left\{-\frac{4}{5}\right\}$
11) $16^{-3 k}=64^{-2 k}$
\{ All real numbers. \}
12) $64^{2-3 n}=\frac{1}{16}\left\{\frac{8}{9}\right\}$
13) $27^{-2 x}=9^{3 x+3}\left\{-\frac{1}{2}\right\}$
15) $\begin{aligned} & 4^{n-1}=16 \\ & \{3\}\end{aligned}$
17) $625^{3 v+2}=25\left\{-\frac{1}{2}\right\}$
19) $64^{3 k-2}=16^{-3 k}\left\{\frac{2}{5}\right\}$
14) $216^{3 b}=36^{-b-2}\left\{-\frac{4}{11}\right\}$
16) $2^{-n}=4$
$\{-2\}$
18) $5^{-n}=25$
$\{-2\}$
20) $36^{k-3}=216^{3 k}\left\{-\frac{6}{7}\right\}$

Sketch the graph of each function.

21) $y=\frac{1}{4} \cdot\left(\frac{1}{6}\right)^{x}$
22) $y=5 \cdot 2^{x}$

23) $y=5 \cdot\left(\frac{1}{2}\right)^{x}$

24) $y=3 \cdot 2^{x}$

25) $y=\frac{1}{4} \cdot\left(\frac{1}{8}\right)^{x}$

26) $y=2 \cdot\left(\frac{1}{3}\right)^{x}$

27) $y=\frac{1}{2} \cdot 2^{x}$

28) $y=\frac{1}{3} \cdot\left(\frac{1}{2}\right)^{x}$

29) $y=2 \cdot 3^{x}$

30) $y=3 \cdot\left(\frac{1}{2}\right)^{x}$

31) $y=\frac{1}{4} \cdot\left(\frac{1}{2}\right)^{x}$

32) $y=\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{x}$

33) $y=4 \cdot\left(\frac{1}{2}\right)^{x}$

34) $y=\frac{1}{4} \cdot\left(\frac{1}{7}\right)^{x}$

35) $y=2 \cdot 2^{x}$

36) $y=\frac{1}{3} \cdot\left(\frac{1}{7}\right)^{x}$

37) $y=4 \cdot 2^{x}$

38) $y=\frac{1}{3} \cdot 2^{x}$

39) Trevon invests $\$ 3,485$ in a savings account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 6 years?
\$5,632.02
40) Ming invests $\$ 8,615$ in a savings account with a fixed annual interest rate of 2% compounded continuously. What will the account balance be after 11 years?
\$10,734.95
41) $y=\frac{1}{4} \cdot 5^{x}$

42) $y=\frac{1}{4} \cdot 4^{x}$

43) Kristin invests $\$ 5,123$ in a savings account with a fixed annual interest rate of 9% compounded continuously. What will the account balance be after 6 years?
\$8,791.10
44) Shanice invests $\$ 8,369$ in a retirement account with a fixed annual interest rate of 5% compounded continuously. What will the account balance be after 18 years?
\$20,584.42
45) Mike invests $\$ 4,938$ in a savings account with a fixed annual interest rate of 4% compounded continuously. What will the account balance be after 10 years?
\$7,366.63
46) Perry invests $\$ 4,314$ in a retirement account with a fixed annual interest rate of 7% compounded continuously. What will the account balance be after 14 years?
\$11,494.46
47) Julio invests $\$ 4,967$ in a savings account with a fixed annual interest rate of 9% compounded continuously. What will the account balance be after 8 years?
\$10,204.37
48) Pranav invests $\$ 4,590$ in a savings account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 8 years?

\$8,704.85

53) Darryl invests $\$ 7,701$ in a retirement account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 15 years?
```
$18,941.40
```

55) Emily invests $\$ 3,782$ in a retirement account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 16 years?
\$9,877.44
56) Ndiba invests $\$ 6,390$ in a savings account with a fixed annual interest rate of 7\% compounded continuously. What will the account balance be after 10 years?
\$12,867.88
57) Julio invests $\$ 1,319$ in a retirement account with a fixed annual interest rate of 7% compounded continuously. What will the account balance be after 13 years?
\$3,276.82

Rewrite each equation in exponential form.

61) $\log _{17} 289=2$
$17^{2}=289$
62) Matt invests $\$ 1,426$ in a retirement account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 20 years? \$4,734.49
63) Ndiba invests $\$ 5,851$ in a retirement account with a fixed annual interest rate of 7% compounded continuously. What will the account balance be after 17 years? \$19,232.71
64) Stephanie invests $\$ 5,076$ in a retirement account with a fixed annual interest rate of 5% compounded continuously. What will the account balance be after 19 years?
\$13,125.06
65) Jose invests $\$ 7,760$ in a retirement account with a fixed annual interest rate of 3% compounded continuously. What will the account balance be after 17 years?
\$12,922.66
66) Jimmy invests $\$ 3,011$ in a retirement account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 14 years?
\$9,228.28
67) Eduardo invests $\$ 8,892$ in a savings account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 9 years?
\$15,258.73
68) Emily invests $\$ 4,162$ in a savings account with a fixed annual interest rate of 6% compounded continuously. What will the account balance be after 7 years?
\$6,334.40
69) Sumalee invests $\$ 6,237$ in a savings account with a fixed annual interest rate of 8% compounded continuously. What will the account balance be after 4 years?
\$8,589.15
70) $\log _{11} 121=2$
$11^{2}=121$
71) $\log _{\frac{1}{15}} \frac{1}{225}=2\left(\frac{1}{15}\right)^{2}=\frac{1}{225}$
72) $\log _{361} 19=\frac{1}{2} 361^{\frac{1}{2}}=19$
73) $\log _{8} 64=2$

$$
8^{2}=64
$$

66) $\log _{9} 3=\frac{1}{2} 9^{\frac{1}{2}}=3$
67) $\log _{4} 16=2$

$$
4^{2}=16
$$

69) $\log _{289} 17=\frac{1}{2} 289^{\frac{1}{2}}=17$
70) $\log _{18} 324=2$

$$
18^{2}=324
$$

73) $\log _{\frac{1}{5}} \frac{1}{25}=2\left(\frac{1}{5}\right)^{2}=\frac{1}{25}$
74) $\log _{12} 144=2$

$$
12^{2}=144
$$

77) $\log _{13} 1=0$

$$
13^{0}=1
$$

79) $\log _{125} 25=\frac{2}{3} 125^{\frac{2}{3}}=25$
80) $\log _{8} 8=1$

$$
8^{1}=8
$$

Rewrite each equation in logarithmic form.
81) $20^{2}=400$

$$
\log _{20} 400=2
$$

83) $5^{3}=125$
$\log _{5} 125=3$
84) $12^{1}=12$
$\log _{12} 12=1$
85) $18^{2}=324$
$\log _{18} 324=2$
86) $\left(\frac{1}{18}\right)^{2}=\frac{1}{324} \log _{\frac{1}{18}} \frac{1}{324}=2$
87) $16^{\frac{1}{2}}=4 \quad \log _{16} 4=\frac{1}{2}$
88) $9^{\frac{1}{2}}=3 \quad \log _{9} 3=\frac{1}{2}$
89) $2^{3}=8$ $\log _{2} 8=3$
90) $\left(\frac{1}{12}\right)^{2}=\frac{1}{144} \log _{\frac{1}{12}} \frac{1}{144}=2$
91) $289^{\frac{1}{2}}=17 \log _{289} 17=\frac{1}{2}$
92) $13^{0}=1$
$\log _{13} 1=0$
93) $3^{3}=27$
$\log _{3} 27=3$
94) $19^{2}=361$
$\log _{19} 361=2$
95) $13^{2}=169$
$\log _{13} 169=2$
96) $15^{2}=225$ $\log _{15} 225=2$
97) $15^{1}=15$
$\log _{15} 15=1$
98) $14^{2}=196$ $\log _{14} 196=2$
99) $9^{2}=81$ $\log _{9} 81=2$
100) $2^{4}=16$ $\log _{2} 16=4$
101) $8^{2}=64$
$\log _{8} 64=2$
