7.) (12 pts, 6 pts) Undeterred by the quilted softness, the mischievous marsupials continue their bombardment. Frantically, Campy begins to throw more toiletries.
a) If Tamp can throw Charmin at a maximum velocity of $138 \mathrm{~m} / \mathrm{s}$, what is the maximum horizontal distance he can expect to volley it?

$$
\begin{aligned}
& 45^{\circ} \text { for max distance } \quad y=y_{0}+v_{0 y} t-4.9 t^{2} \\
& 4.9 t^{2}=\left(138 \sin 45^{\circ}\right) t \quad\left[\begin{array}{l}
t \\
\left.0=0+(138 \sin 45) t-4.9 t^{2}\right] \\
+4.9 t^{2} \\
\frac{4.9 t}{49}=\frac{138 \sin 45^{\circ}}{4.9} \quad t=\frac{138 \sin 45^{\circ}}{4.9}=19.9 \mathrm{~s}
\end{array}\right.
\end{aligned}
$$

b) With squirrels now flying overhead, what is the maximum height Campy could

$138 \sin 70^{\circ}$

$$
t_{0}^{2} b=138 \sin 70^{\circ}+(-9.9 t)
$$

$$
\begin{aligned}
& +9.8 t \\
& \frac{9.8 t}{9.9}=\frac{138 \sin -76^{\circ}}{9.8}
\end{aligned}
$$

$$
+9.9 t \quad \frac{\frac{138 \sin 7}{9.8}}{\frac{13.23 \mathrm{~s}}{}}
$$

8.) (6 pts) Draw a free body diagram displaying the motion of an object along a uniform circular path. Include θ, r_{i}, and v. Define centripetal acceleration and include the appropriate vector.

$$
\left(138 \sin 70^{\circ}\right)(3, .23)-4,9(33.23)^{2}
$$

858 m

9.) (6 pts) The possums have breached the perimeter! Valiantly, Tamps tries to fend them off, swinging a 1.35 kg half used dove bar on a 2.80 m long piece of used_nen dental floss. Find the centripetal acceleration of the dove bar if he is swinging it at $72.0 \mathrm{~m} / \mathrm{s}$?

$$
a_{c}=\frac{V^{2}}{r}=\frac{(72.0 \mathrm{~m} / \mathrm{s})^{2}}{2.80 \mathrm{~m}}=1851 \mathrm{~m} / \mathrm{s}^{2}
$$

10.) (12 pts, 6 pts each) The possums refuse to play dead. With squirrels raining down from above, Tampy resigns himself and begrudgingly executes trash can protocols. The control center rumbles as walls shift and rockets emerge. This maxi-pad has wings.
a) The maxi-pad launches at a velocity of $268 \mathrm{~m} / \mathrm{s}$ at an angle of 40° above the horizontal. Find the resulting horizontal velocity if the wind is blowing against the ship at $16 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& x=r \cos \theta \\
& 268 \cos 40-16=189.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

