Algebra 2 Chapter 3 Pre-Test
1.) (5 pts each, 10 pts total) Solve each of the following systems of equations by graphing.

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) } \frac{3 x+4 y}{-x+2 y}=6 \\
3 \\
3 x+4 y=12 \\
x=0 \quad(0,3) \\
y=3
\end{array} \\
& 3 x+4 y=12 \\
& x=4 \quad y=0 \quad(4,0)
\end{aligned}
$$

$$
-6 x+2 y=6
$$

$$
(-6,0) \quad(0,3)
$$

b)

$$
\begin{aligned}
& 2 x+5 y=10 \\
& y=2 x-2
\end{aligned}
$$

2.) (5 pts each, 10 pts total) Solve each of the following systems of equations through substitution.
a) $4 x+2 y=20$

$$
y=2(3)-2
$$

$$
y=\frac{b-2}{u-4}
$$

$$
\begin{gathered}
4 x+2(2 x-2)=20 \\
\begin{aligned}
& 4 x+4 x-4=20 \\
& 4 x-4=20 \\
&+4+4 \\
& \frac{8 x}{8}=24 \\
& 8
\end{aligned} \\
x=3
\end{gathered}
$$

$$
=2 x-2 \quad 4 x+4 x-4=20
$$

$$
y=2 x-2
$$

$$
\begin{aligned}
& 6 x+y=13 \\
& -6 x
\end{aligned}
$$

b)

$$
\begin{aligned}
& 5 x-3 y=7 \\
& 6 x+y=13
\end{aligned}
$$

$$
y=-6 x+13
$$

3.) (5 pts each, 10 pts total) Solve each of the following systems of equations through elimination.
$\begin{array}{lll}\text { a) } \begin{array}{l}2 x+7 y=-8 \\ x-4 y=11\end{array}-2(x-7 y=-8 & x-4 y=11 \\ & x-4(-2)=11\end{array}$

$$
\begin{array}{r}
x+8=11 \\
-8-8
\end{array}
$$

b)

$$
\begin{aligned}
& 4 x-5 y=31 \\
& 2 x+3 y=-1
\end{aligned}
$$

4.) (5 pts each, 10 pts total) Solve each of the following systems of equations through any method.
a) $3 x+4 y=-21$
$-4 x-4 y=16$

b) $8 x+4 y=16$
$y=-4 x+5$

5.) (5 pts each, 15 pts total) Solve each of the following systems of inequalities by graphing. is

a)$x+y>2$ $x-y \leq 4$	$x-y=4$
	$x=0 y=-4$

$x+y=2$

$$
x=0 \quad y=2 \quad(0,2) \quad x=4 \quad y=0 \quad(4,0)
$$

$(0,2) \quad x-y=4$

$x=2 \quad y=0$

b) $2 x+y>2$
$x-y \geq 3$

c) $y>3 x+2$ $y \leq-2 x+1$

6.) (10 pts each, 20 pts total) Graph each system of constraints. Name all vertices. Then find the values of x and y that maximize or minimize the objective function.

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
x+y \leq 6 \quad(5,0) \quad(0,10) \\
2 x+y \leq 10 \\
x \geq 0 \quad \\
y \geq 0
\end{array} \quad \text { Quad } \quad \text { out }
\end{aligned}
$$

Vertices:

$$
(0,6),(0,0),(5,0),(4,2)
$$

Find the maximum for $P=4 x+y$

$$
\begin{array}{crl}
-(x+y=6) & -x-y=-6 & \\
2 x+y=10 & 2 x+h=10 & x+y=6 \\
4 x+y & x=4 & 4+y=6 \quad y=2 \\
(0,0) & 4(0)+0=0 & (5,0) \\
(0,6) & 4(0)+6=20 & (4,2) \\
(0) & 4(4)+2=18
\end{array}
$$

b)

$$
\begin{aligned}
& 4 x+2 y \leq 4 \\
& 2 x+4 y \leq 4 \\
& x \geq 0 \\
& y \geq 0
\end{aligned}
$$

Vertices:

Find the minimum for $P=3 x+y$

7.) (various pts each, 25 pts total) Solve each system using elimination.
a) (10 pts) Solve.
(1) $2 x-3 y+z=-3$
(2) $x-5 y+7 z=-11$
(3) $-10 x+4 y-6 z=28$
(2) $(x-5 y+7 z=-11)$
(3) $-10 x+4 y-6 z=28$
(1) $2 x-3 y+z=-3$
(2) $2(x-5 y+7 z=-11)$
$\begin{aligned}1)(x-50 y+70 z & =-110 \\ +-10 x+4 y-6 z & =28 \\ -46 y+\frac{64 z}{2} & =\frac{-82}{2}\end{aligned}$
(4) $\left.{ }^{23} 7 y-13 z=19\right)$
$57(-23 y+32 z=-41)$ $16 y y-299 z=437$ $\begin{aligned}-14 y+224 z & =-287 \\ \frac{-75 z}{-25} & =\frac{150}{-75}\end{aligned}$

$$
\begin{aligned}
& x-5 y+7 z=-117 y-13 z=19 \\
& x-5(-1)+7(-2)=-117 y-13(-2)=19 \\
& \begin{aligned}
7 y+26 & =19 \\
-26 & -26
\end{aligned} \\
& x+5-14=-11 \\
& \begin{array}{l}
x-9=-11 \\
+9+9 \\
x=-2
\end{array} \\
& \frac{7 y}{7}=\frac{-7}{2} \quad y=-1 \\
& (-2,-1,-2) \\
& \text { b) (2.5 pts) Graph the above solution. }
\end{aligned}
$$

