Algebra 2 Chapter 3 Pre-Test

1.) (5 pts each, 10 pts total) Solve each of the following systems of equations by graphing.

b)
$$2x + 5y = 10$$

 $y = 2x - 2$

2.) (5 pts each, 10 pts total) Solve each of the following systems of equations through

substitution

(a)
$$4x + 2y = 20$$

$$y = 2x - 2$$

$$y = 2x - 2$$

 $y = 2(3) - 2$
 $y = 6 - 2$
 $y = 4/$

b)
$$5x - 3y = 7$$

 $6x + y = 13$

$$y = -6x$$

$$y = -6x + 13$$

3.) (5 pts each, 10 pts total) Solve each of the following systems of equations through elimination.

elimination.

(a)
$$2x + 7y = -8$$
 $x - 4y = 11$

(b) $4x - 5y = 31$
 $2x + 3y = -1$

(c) $2x + 7y = -8$
 $2x + 8 = 11$
 $2x + 8 = 11$
 $2x + 3y = -1$

(a) $2x + 7y = -8$
 $2x + 7y = -8$
 $2x + 7y = -8$
 $2x + 8 = 11$
 $2x + 3y = -22$
 $2x + 3y = -1$

4.) (5 pts each, 10 pts total) Solve each of the following systems of equations through any method.

a)
$$3x + 4y = -21$$

 $-4x - 4y = 16$

b)
$$8x + 4y = 16$$

 $y = -4x + 5$

5.) (5 pts each, 15 pts total) Solve each of the following systems of inequalities by graphing.

$$\begin{array}{c}
\text{(a)} \quad x + y > 2 \\
x - y \le 4
\end{array}$$

$$X + y = 2$$

 $X = 0$ $y = 2$

(a)
$$x + y > 2$$

 $x - y \le 4$
 $X - y = 4$
 $X = 0$ $y = -4$ $(0, -4)$
 $X + y = 2$
 $(0, 2)$
 $X - y = 4$
 $(0, 4)$
 $(0, 4)$

b)
$$2x + y > 2$$

 $x - y \ge 3$

c)
$$y > 3x + 2$$

 $y \le -2x + 1$

6.) (10 pts each, 20 pts total) Graph each system of constraints. Name all vertices. Then find the values of x and y that maximize or minimize the objective function.

Vertices:
$$(0,6), (0,0), (5,0), (4,2)$$

Find the maximum for $P = 4x + y$

Find the maximum for
$$P = 4x + y$$

$$-(x + y = 6) - x - y = -6$$

$$2x + y = 10$$

$$4x + y$$

$$(0,0) + 0 = 0$$

$$(5,6)$$

$$4(0) + 6 = 6$$

$$(4,2)$$

$$(4,2)$$

$$(4,2)$$

$$(4,2)$$

$$(4,2)$$

$$(4,2)$$

$$(4,2)$$

$$(4,2)$$

$$(4,3)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

$$(4,4)$$

b)
$$4x + 2y \le 4$$
$$2x + 4y \le 4$$
$$x \ge 0$$
$$y \ge 0$$

Vertices:

Find the minimum for P = 3x + y

7.) (various pts each, 25 pts total) Solve each system using elimination.

(a) (10 pts) Solve.
(b)
$$2x - 3y + z = -3$$

(c) $x - 5y + 7z = -11$
(d) $-10x + 4y - 6z = 28$
(e) $-3y + 7z = -11$
(f) $-3y + 7z = -11$
(g) $-10x + 4y - 6z = 28$
(h) $-3y + 70z = -110$
 $-10x + 4y - 6z = 28$
(h) $-10x + 4y - 10z = 19$
(h) $-10x + 4y - 10z = 19$