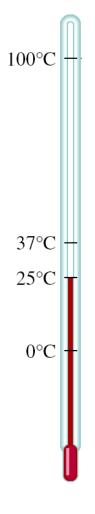


Thermochemistry Chapter 6

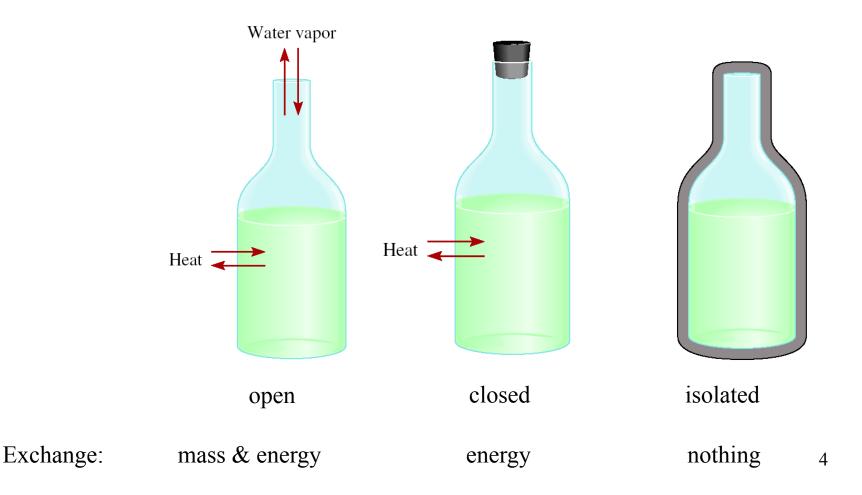
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy is the capacity to do work.


- *Radiant energy* comes from the sun and is earth's primary energy source
- *Thermal energy* is the energy associated with the random motion of atoms and molecules
- *Chemical energy* is the energy stored within the bonds of chemical substances
- *Nuclear energy* is the energy stored within the collection of neutrons and protons in the atom
- *Potential energy* is the energy available by virtue of an object's position

Energy Changes in Chemical Reactions

Heat is the transfer of thermal energy between two bodies that are at different temperatures.

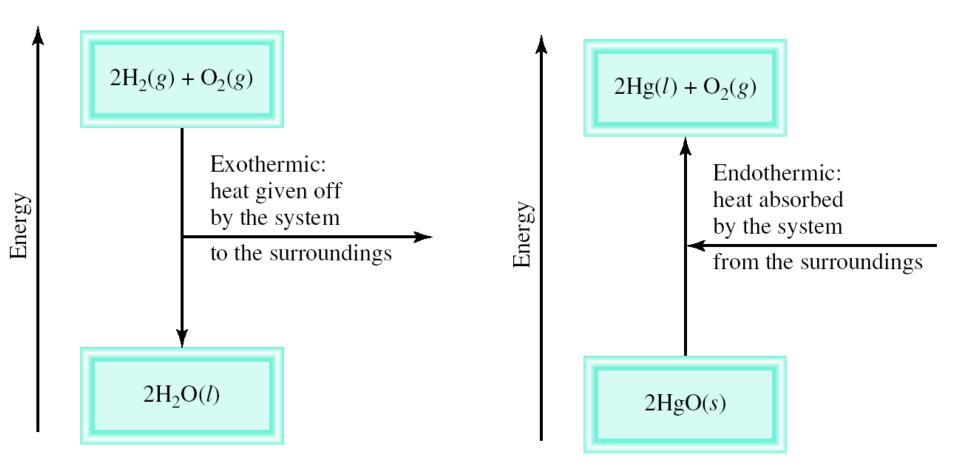

Temperature is a measure of the thermal energy.

Temperature = Thermal Energy

Thermochemistry is the study of heat change in chemical reactions.

The system is the specific part of the universe that is of interest in the study.

Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings.

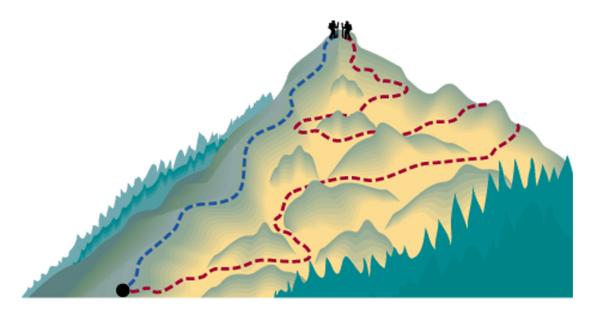

$$2H_2(g) + O_2(g)$$
 $2H_2O_2(l) + energy$

$$H_2O(g) - H_2O(l) + energy$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

energy + 2HgO (s)
$$2H_{g}(h) \rightarrow O_{2}(g)$$

energy + H₂O (s) $H_{2}O(h)$


Schematic of Exothermic and Endothermic Processes

Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

energy , pressure, volume, temperature

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

$$\Delta E = E_{final} - E_{initial}$$

1

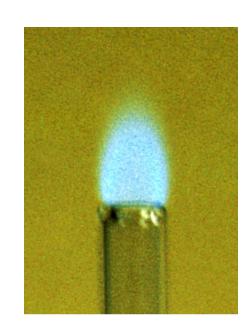
$$\Delta P = P_{final} - P_{initial}$$

$$\Delta V = V_{final} - V_{initial}$$

$$\Delta T = T_{final} - T_{initial}$$

First law of thermodynamics – energy can be converted from one form to another, but cannot be created or destroyed.

$$\Delta E_{system} + \Delta E_{surroundings} = 0$$


or

$$\Delta E_{system} = -\Delta E_{surroundings}$$

$$C_3H_8 + 5O_2 \qquad 3CO_2 + 4H_2O$$

Exothermic chemical reaction!

Chemical energy lost by combustion = Energy gained by the surroundings system surroundings

8

Another form of the *first law* for ΔE_{system}

 $\Delta E = q + w$

- ΔE is the change in internal energy of a system
- q is the heat exchange between the system and the surroundings
- *w* is the work done on (or by) the system
- $w = -P\Delta V$ when a gas expands against a constant external pressure

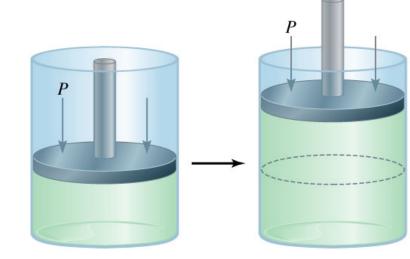
TABLE 6.1	Sign Conventions for Work and Heat	
Process		Sign
Work done by the system on the surroundings		_
Work done on the system by the surroundings		+
Heat absorbed by the system from the surroundings (endothermic process) +		
Heat absorbed by the surroundings from the system (exothermic process) –		

Work Done On the System

w = F x d

 $w = -P \Delta V$

$$P x V = \frac{F}{x d^3} = F x d = w$$


 $\Delta V > 0$

 $-P\Delta V < 0$

 $w_{sys} < 0$

final

Work is not a state function.

initial

10

 $\Delta w = \mathbf{y}_{final} - w_{initial}$

A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm?

$$w = -P \Delta V$$

(a)
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
 $P = 0 \text{ atm}$

$$W = -0$$
 atm x 3.8 L = 0 L•atm = 0 joules

(b)
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
 $P = 3.7 \text{ atm}$

w = -3.7 atm x 3.8 L = -14.1 L•atm

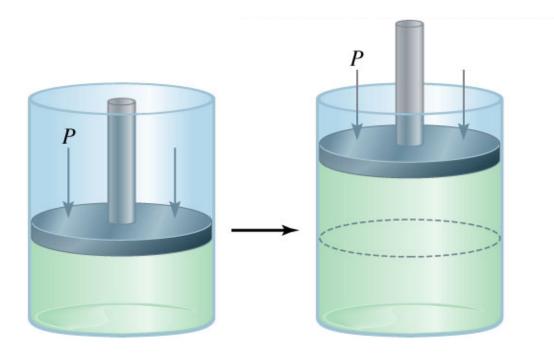
$$w = -14.1 \text{ L} \cdot \text{atm x}$$
 $\frac{101.3 \text{ J}}{1 \text{L} \cdot \text{atm}} = -1430 \text{ J}$

Chemistry in Action: Making Snow

 $\Delta E = q + w$ q = 0 $w < 0, \Delta E < 0$ $\Delta E = C\Delta T$

 $\Delta T < 0$, SNOW!

Enthalpy and the First Law of Thermodynamics

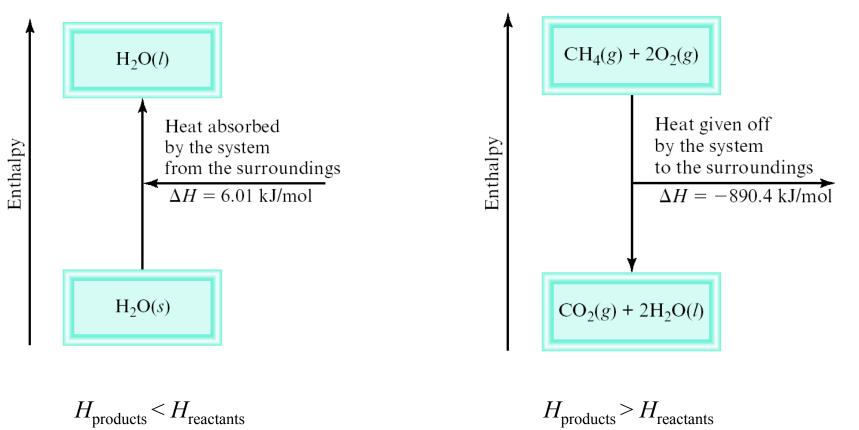

 $\Delta E = q + w$

At constant pressure:

 $q = \Delta H$ and $w = -P\Delta V$

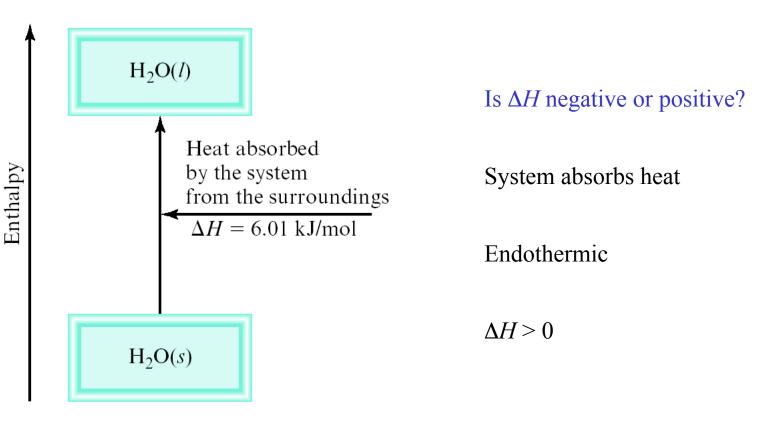
 $\Delta E = \Delta H - P \Delta V$

 $\Delta H = \Delta E + P \Delta V$

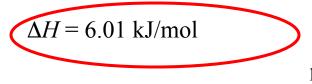


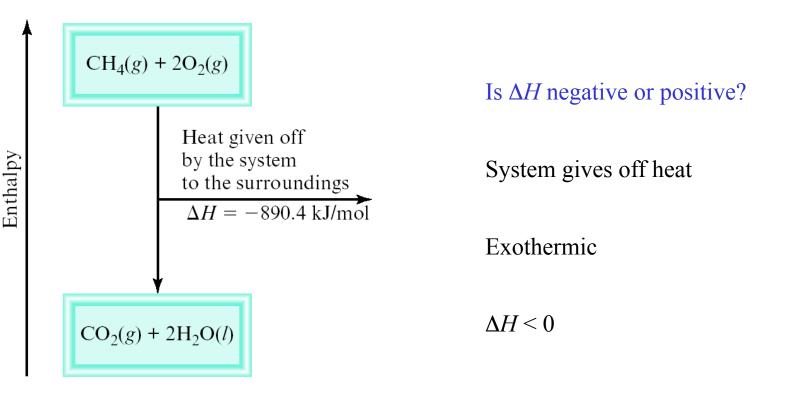
Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

$\Delta H = H (\text{products}) - H (\text{reactants})$

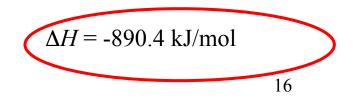

 ΔH = heat given off or absorbed during a reaction at constant pressure

 $\Delta H < 0$


14


 $\Delta H > 0$

6.01 kJ are absorbed for every 1 mole of ice that melts at 0°C and 1 atm.


$$H_2O(s) = H_2O(l)$$

890.4 kJ are released for every 1 mole of methane that is combusted at 25° C and 1 atm.

 $CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(l)$

• The stoichiometric coefficients always refer to the number of moles of a substance

 $H_2O(s) = H_2O(l)$ $\Delta H = 6.01 \text{ kJ/mol}$

• If you reverse a reaction, the sign of ΔH changes

$$H_2O(D - H_2Q(s)) \qquad \Delta H = -6.01 \text{ kJ/mol}$$

• If you multiply both sides of the equation by a factor *n*, then ΔH must change by the same factor *n*.

$$2H_2O(s) = 2H_2O(l)$$
 $\Delta H = 2 \times 6.01 = 12.0 \text{ kJ}$

• The physical states of all reactants and products must be specified in thermochemical equations.

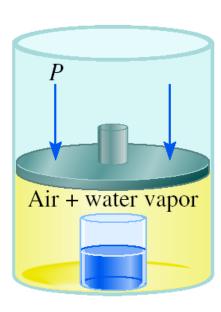
$$H_{2}O\left(\oint -H_{2}O\left(l\right) \qquad \Delta H = 6.01 \text{ kJ/mol}$$
$$H_{2}O\left(\oint -H_{2}O\left(g\right) \qquad \Delta H = 44.0 \text{ kJ/mol}$$

How much heat is evolved when 266 g of white phosphorus (P_4) burn in air?

$$P_{4}(s) + 5O_{2}(g) \qquad P_{4}O_{10}(s) \qquad \Delta H = -3013 \text{ kJ/mol}$$

$$266 \text{ g} P_{4} \propto \frac{1 \text{ mol} P_{4}}{123.9 \text{ g} P_{4}} \propto \frac{3013 \text{ kJ}}{1 \text{ mol} P_{4}} = 6470 \text{ kJ}$$

A Comparison of ΔH and ΔE


2Na (s) + 2H₂O (l) 2NaOH (aq) + H₂ (g) $\Delta H = -367.5$ kJ/mol

 $\Delta E = \Delta H - P\Delta V$ At 25 °C, 1 mole H₂ = 24.5 L at 1 atm

 $P\Delta V = 1$ atm x 24.5 L = 2.5 kJ

 $\Delta E = -367.5 \text{ kJ/mol} - 2.5 \text{ kJ/mol} = -370.0 \text{ kJ/mol}$

The *specific heat* (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius.

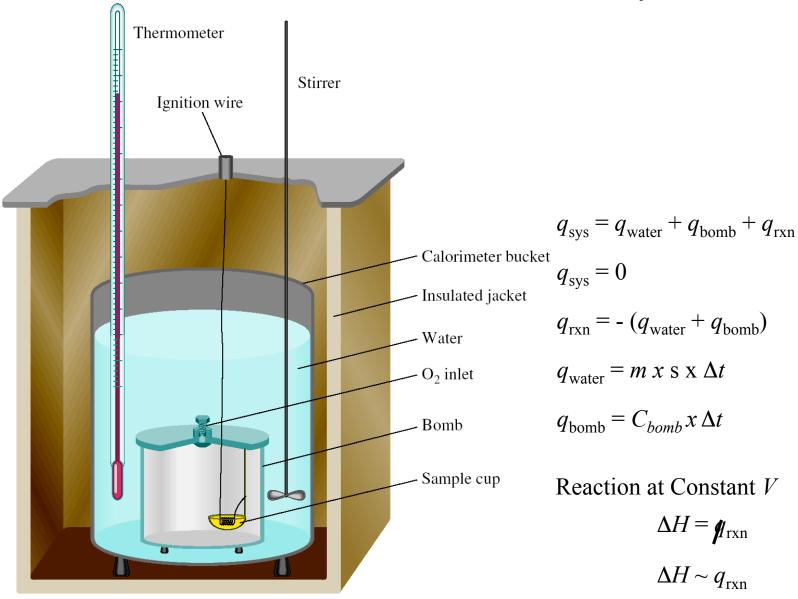
The *heat capacity* (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius.

TABLE 6.2The Specific Heatsof Some CommonSubstances		
Substance	Specific Heat (J/g · °C)	
Al	0.900	
Au	0.129	
C (graphite)	0.720	
C (diamond)	0.502	
Cu	0.385	
Fe	0.444	
Hg	0.139	
H_2O	4.184	
C ₂ H ₅ OH (ethanol)	2.46	

C = m x s

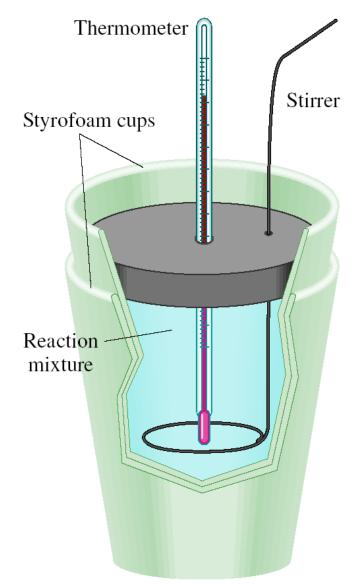
Heat (q) absorbed or released:

 $q = m x s x \Delta t$ $q = C x \Delta t$ $\Delta t = t_{\text{final}} - t_{\text{initial}}$


How much heat is given off when an 869 g iron bar cools from 94°C to 5°C?

$$s \text{ of Fe} = 0.444 \text{ J/g} \bullet \circ \text{C}$$

$$\Delta t = t_{\text{final}} - t_{\text{initial}} = 5 \circ \text{C} - 94 \circ \text{C} = -89 \circ \text{C}$$


$$q = ms\Delta t$$
 = 869 g x 0.444 J/g • °C x -89°C = -34,000 J

Constant-Volume Calorimetry

No heat enters or leaves!

Constant-Pressure Calorimetry

$$q_{\text{sys}} = q_{\text{water}} + q_{\text{cal}} + q_{\text{rxn}}$$
$$q_{\text{sys}} = 0$$
$$q_{\text{rxn}} = -(q_{\text{water}} + q_{\text{cal}})$$
$$q_{\text{water}} = m x \text{ s x } \Delta t$$
$$q_{\text{cal}} = C_{cal} x \Delta t$$
Reaction at Constant P

 $\Delta H = q_{\rm rxn}$

No heat enters or leaves!

TABLE 6.3	ABLE 6.3 Heats of Some Typical Reactions Measured at Constant Pressure			
Type of Reaction		Example	∆ <i>H</i> (kJ/mol)	
Heat of neutr	alization	$\text{HCl}(aq) + \text{NaOH}(aq) \longrightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l)$	-56.2	
Heat of ionization		$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2	
Heat of fusion		$H_2O(s) \longrightarrow H_2O(l)$	6.01	
Heat of vapo	rization	$H_2O(l) \longrightarrow H_2O(g)$	44.0*	
Heat of react	ion	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2	

*Measured at 25°C. At 100°C, the value is 40.79 kJ.

Chemistry in Action:

Fuel Values of Foods and Other Substances

$C_{6}H_{12}O_{6}(s) +$	$6O_2(g) - CO_2(g) +$	$-6H_2O(l) \Delta H = -2801 \text{ kJ/mol}$
1 cal = 4.184 J 1 Cal = 1000 cal	= 4184 J	Nutrition Facts Serving Size 6 cookies (28g) Servings Per Container about 11
Substance	$\Delta H_{combustion} (kJ/g)$	Calories 120 Calories from Fat 30 % Daily Value*
Apple	-2	Total Fat 4g 6% Saturated Fat 0.5g 4% Polyunsaturated Fat 0g
Beef	-8	Monounsaturated Fat 1g Cholesterol 5mg 2%
Beer	-1.5	Sodium 105mg 4% Total Carbohydrate 20g 7%
Gasoline	-34	Dietary Fiber Less than 1gram 2% Sugars 7g Protein 2g

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the standard enthalpy of formation (ΔH^0) as a reference point for all enthalpy expressions.

Standard enthalpy of formation (ΔH^0) is the heat change that results when one mole of a compound is formed from its elements at a pressure of ¹1 atm.

The standard enthalpy of formation of any element in its most stable form is zero.

$$\Delta H^0 (O_2) = 0$$

$$\Delta H^0 (O_3) = 142 \text{ kJ/mol}$$

$$\Delta H^0 (O_3) = 142 \text{ kJ/mol}$$

$$\Delta H^0 (C, \text{ diamond}) = 1.90 \text{ kJ/mol}$$

	Substances at 25°C		
Substance	ΔH [°] _f (kJ/mol)	Substance	ΔH [°] _f (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.0	$\operatorname{Hg}(l)$	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.9
$\operatorname{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O(g)$	81.56
$CaCO_3(s)$	-1206.9	$N_2O_4(g)$	9.66
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-271.6	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	Zn(s)	0
$H_2O(l)$	-285.8	ZnO(s)	-348.0

Standard Enthalpies of Formation of Some Inorganic

+ 0500

TABLE 6.4

The standard enthalpy of reaction (ΔH^0) is the enthalpy of a reaction carried out at 1 atm.

$$aA + bB = cC + dD$$

$$\Delta H_{rxn}^{0} = \begin{bmatrix} c\Delta H_{0}(C) + d\Delta H_{0}(D) \end{bmatrix} - \begin{bmatrix} a\Delta H_{0}(A) + b\Delta H_{0}(B) \end{bmatrix}$$

$$\Delta H^{0}_{rxn} = \sum_{f} n \Delta H^{0} (products) - \sum_{f} m \Delta H^{0} (reactants)$$

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

C(graphite) + O₂(g)

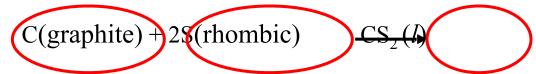
$$\Delta H^{\circ} = -110.5 \text{ kJ}$$

$$\Delta H^{\circ} = -283.0 \text{ kJ}$$

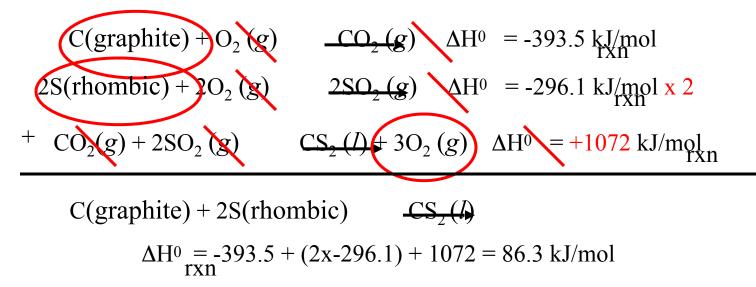
$$CO(g) + \frac{1}{2}O_2(g)$$

$$C(graphite) + 1/2O_2(g) - CO_2(g)$$

$$C(graphite) + O_2(g) - CO_2(g)$$


$$C(graphite) + O_2(g) - CO_2(g)$$

$$C(graphite) + O_2(g) - CO_2(g)$$


Calculate the standard enthalpy of formation of $CS_2(l)$ given that:

 $C(\text{graphite}) + O_2(g) \qquad \underline{CO_2(g)} \qquad \Delta H^0 = -393.5 \text{ kJ/mol}$ $S(\text{rhombic}) + O_2(g) \qquad \underline{SO_2(g)} \qquad \Delta H^0 = -296.1 \text{ kJ/mol}$ $CS_2(l) + 3O_2(g) \qquad \underline{CO_2(g)} + 2SO_2(g) \qquad \Delta H^0 = -1072 \text{ kJ/mol}$ rxn

1. Write the enthalpy of formation reaction for CS_2

2. Add the given rxns so that the result is the desired rxn.

Benzene (C_6H_6) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol.

$$2C_{6}H_{6}(l) + 15O_{2}(g) = 12CO_{2}(g) + 6H_{2}O(l)$$

$$\Delta H^{0}_{rxn} = \sum n\Delta H^{0} (products) - \sum m\Delta H^{0} (reactants)$$

$$\Delta H^{0}_{rxn} = \begin{bmatrix} 12\Delta H^{0}(CO_{2}) + 6\Delta H^{0}(H_{2}O) \end{bmatrix} - \begin{bmatrix} 2\Delta H^{0}(C_{6}H_{6}) \end{bmatrix}$$

$$\Delta H^{0}_{rxn} = \begin{bmatrix} 12x - 393.5 + 6x - 187.6 \end{bmatrix} - \begin{bmatrix} 2x49.04 \end{bmatrix} = -5946 \text{ kJ}$$

$$-5946 \text{ kJ} = -2973 \text{ kJ/mol } C_{6}H_{6}$$

2 mol

Chemistry in Action: Bombardier Beetle Defense

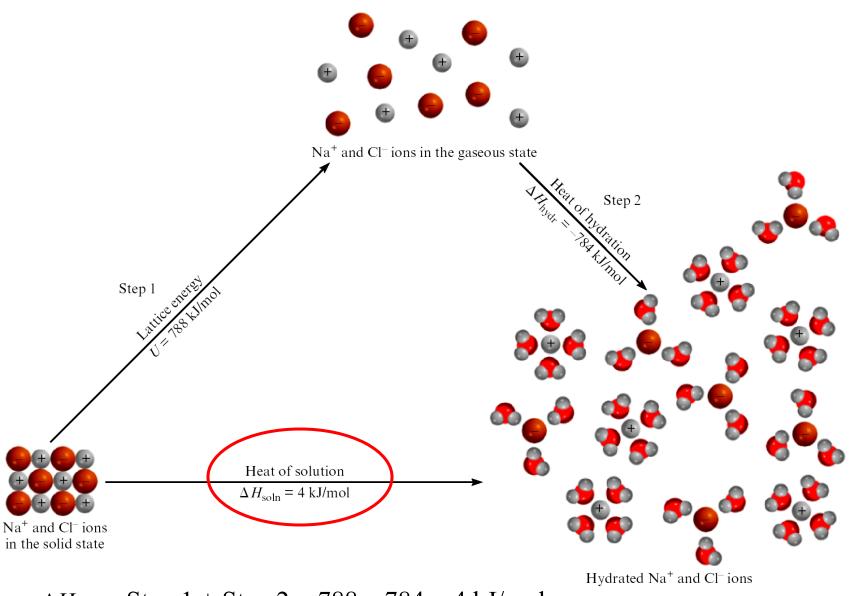
 $C_{6}H_{4}(OH)_{2}\left(aq\right) + H_{2}O_{2}\left(aq\right) \qquad C_{6}H_{4}O_{2}\left(aq\right) + 2H_{2}O\left(l\right)\Delta H^{0} = ?$

 $C_6H_4(OH)_2(aq) = \frac{C_6H_4O_2}{(aq)} + H_2(g) \Delta H^0 = 177 \text{ kJ/mol}$

 $H_2O_2(aq) = H_2O_2(l) + \frac{1}{2}O_2(g) \Delta H^0 = -94.6 \text{ kJ/mol}$

 $H_2(g) + \frac{1}{2}O_2(g)$ $H_2O(b) \Delta H^0 = -286 \text{ kJ/mol}$

 $\Delta H^0 = 177 - 94.6 - 286 = -204 \text{ kJ/mol}$


Exothermic!

The *enthalpy of solution* (ΔH_{soln}) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.

	$\Delta H_{\rm soln} = H_{\rm s}$	$_{oln}$ - $H_{components}$
TABLE 6.5	5011 5	
Heats of Solut	ion of	
Some Ionic Co	ompounds	
	$\Delta H_{ m soln}$	Which substance(s) could be used for
Compound	(kJ/mol)	melting ice?
LiCl	-37.1	
CaCl ₂	-82.8	Which substance(s) could be used for a
NaCl	4.0	cold pack?
KC1	17.2	
NH ₄ Cl	15.2	
NH ₄ NO ₃	26.2	

The Solution Process for NaCl

 $\Delta H_{soln} =$ Step 1 + Step 2 = 788 - 784 = 4 kJ/mol