

Reactions in Aqueous Solution Chapter 4

A solution is a homogenous mixture of 2 or more substances

The solute is(are) the substance(s) present in the smaller amount(s)

The solvent is the substance present in the larger amount

Solution
Soft drink (l)
Air (g)
Soft Solder (s)

Solvent
$\mathrm{H}_{2} \mathrm{O}$
N_{2}
Pb

Solute
Sugar, CO_{2}
$\mathrm{O}_{2}, \mathrm{Ar}, \mathrm{CH}_{4}$
Sn

aqueous solutions
of KMnO_{4}

An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity.

A nonelectrolyte is a substance that, when dissolved, results in a solution that does not conduct electricity.

nonelectrolyte

weak electrolyte

strong electrolyte

Conduct electricity in solution?

Cations (+) and Anions (-)

Strong Electrolyte - 100\% dissociation

$$
\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Weak Electrolyte - not completely dissociated

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q)
$$

Ionization of acetic acid

$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q)$

A reversible reaction. The reaction can occur in both directions.

Acetic acid is a weak electrolyte because its ionization in water is incomplete.

Hydration is the process in which an ion is surrounded by water molecules arranged in a specific manner.

Nonelectrolyte does not conduct electricity?

No cations (+) and anions (-) in solution

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)
$$

TABLE 4.1 Classification of Solutes in Aqueous Solution

Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
HCl	$\mathrm{CH}_{3} \mathrm{COOH}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)
HNO_{3}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methanol)
HClO_{4}	HNO_{2}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)
$\mathrm{H}_{2} \mathrm{SO}_{4}^{*}$	NH_{3}	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
NaOH	$\mathrm{H}_{2} \mathrm{O}^{\dagger}$	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose)
$\mathrm{Ba}(\mathrm{OH})_{2}$		
Ionic compounds		

Precipitation Reactions

Precipitate - insoluble solid that separates from solution

PbI_{2}

$$
\begin{array}{r}
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaI}(a q) \quad \mathrm{PbI}_{2}(\mathrm{~s}) \\
\text { molecular equation }
\end{array}
$$

$$
\mathrm{Pb}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{Na}^{+}+2 \mathrm{I}-\quad \mathrm{PbI}_{2}(s) \xrightarrow{\longrightarrow} \mathrm{aa}^{+}+2 \mathrm{NO}_{3}^{-}
$$

ionic equation

$$
\mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \quad \xrightarrow{\mathrm{PbI}}(s)
$$

Na^{+}and $\mathrm{NO}_{3}-$ are spectator ions

Precipitation of Lead Iodide

PbI_{2}

Solubility is the maximum amount of solute that will dissolve in a given quantity of solvent at a specific temperature.

TABLE 4.2 Solubility Rules for Common lonic Compounds in Water at $25^{\circ} \mathrm{C}$

Soluble Compounds Insoluble Exceptions

Compounds containing alkali metal ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$, $\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$) and the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$
Nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, bicarbonates
(HCO_{3}^{-}), and chlorates
$\left(\mathrm{ClO}_{3}^{-}\right)$
Halides $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right) \quad$ Halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}$, and Pb^{2+}
Sulfates $\left(\mathrm{SO}_{4}^{2-}\right) \quad$ Sulfates of $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}^{2+}$, and Pb^{2+}

Insoluble Compounds
 Soluble Exceptions

Carbonates $\left(\mathrm{CO}_{3}^{2-}\right)$, phosphates
Compounds containing alkali metal ions
$\left(\mathrm{PO}_{4}^{3-}\right)$, chromates $\left(\mathrm{CrO}_{4}^{2-}\right)$,
sulfides (S^{2-})
Hydroxides $\left(\mathrm{OH}^{-}\right)$ and the ammonium ion

Compounds containing alkali metal ions and the Ba^{2+} ion

Examples of Insoluble Compounds

CdS
PbS
$\mathrm{Ni}(\mathrm{OH})_{2}$
$\mathrm{Al}(\mathrm{OH})_{3}$

Writing Net Ionic Equations

1. Write the balanced molecular equation.
2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
3. Cancel the spectator ions on both sides of the ionic equation
4. Check that charges and number of atoms are balanced in the net ionic equation

Write the net ionic equation for the reaction of silver nitrate with sodium chloride.

$$
\begin{array}{cc}
\mathrm{AgNO}_{3}(a q)+ & \mathrm{NaCl}(a q) \\
\mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} & \longrightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q) \\
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} & \longrightarrow \mathrm{AgCl}(s)+\mathrm{Na}^{+}+\mathrm{NO}_{3}^{-} \tag{12}
\end{array}
$$

Chemistry In Action:

An Undesirable Precipitation Reaction

$$
\begin{aligned}
\mathrm{Ca}^{2+}(a q)+2 \mathrm{HCO}_{3}(a q)- & \mathrm{CaCO}_{3} \rightarrow \mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{CO}_{2}(a q) \xrightarrow{\text { and }} \xrightarrow{ } \text { (g) }
\end{aligned}
$$

Boiler Scale Deposits

Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.

Cause color changes in plant dyes.

React with certain metals to produce hydrogen gas.

$$
2 \mathrm{HCl}(a q)+\mathrm{Mg}(s) \quad \mathrm{M}_{\mathrm{g}} \mathrm{Cl}(q)+\mathrm{H}_{2}(g)
$$

React with carbonates and bicarbonates to produce carbon dioxide gas

$$
2 \mathrm{HCl}(a q)+\mathrm{CaCO}_{3}(s) \quad \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Aqueous acid solutions conduct electricity.

Properties of Bases

Have a bitter taste

Feel slippery. Many soaps contain bases.

Cause color changes in plant dyes.

Aqueous base solutions conduct electricity.

Examples:

NH_{3}

Arrhenius acid is a substance that produces $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in water

Arrhenius base is a substance that produces OH^{-}in water

Hydronium ion, hydrated proton, $\mathrm{H}_{3} \mathrm{O}^{+}$

A Bronsted acid is a proton donor
A Bronsted base is a proton acceptor

A Brønsted acid must contain at least one ionizable proton!

Monoprotic acids

$\mathrm{HCl} \xrightarrow{+}+\mathrm{Cl}^{-}$
$\mathrm{HNO}_{3} \xrightarrow{-}+\mathrm{NO}_{3}{ }^{-}$
$\mathrm{CH}_{3} \mathrm{COOH} \quad{ }^{++} \mathrm{CH}_{3} \mathrm{COO}^{-}$

Diprotic acids

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\mathrm{H}+}+\mathrm{HSO}_{4}^{-} \\
& \mathrm{HSO}_{4}^{-} \quad \xrightarrow{+\mathrm{H}^{+}}+\mathrm{SO}_{4}^{2-}
\end{aligned}
$$

Triprotic acids

$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\stackrel{\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}}{ }$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$\underset{\mathrm{H}}{ }+\longrightarrow \mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{HPO}_{4}{ }^{2-}$	$\stackrel{\mathrm{H}^{+}}{ } \mathrm{PO}_{4}{ }^{3-}$

Strong electrolyte, strong acid
Strong electrolyte, strong acid
Weak electrolyte, weak acid

Strong electrolyte, strong acid
Weak electrolyte, weak acid

Weak electrolyte, weak acid Weak electrolyte, weak acid Weak electrolyte, weak acid

TABLE 4.3
Some Common Strong and Weak Acids

Strong Acids

Hydrochloric acid	HCl
Hydrobromic acid	HBr
Hydroiodic acid	HI
Nitric acid	HNO_{3}
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Perchloric acid	HClO_{4}
Weak Acids	

Hydrofluoric HF
acid
Nitrous acid HNO_{2}
Phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$
Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$

Identify each of the following species as a Brønsted acid, base, or both. (a) HI , (b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$, (c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

$\mathrm{HI}(a q)$	Brønsted acid	
$\mathrm{H}^{+}(a q)+\mathrm{I}^{-}(a q)$		
$\mathrm{CHO}_{3}^{-}(a q)+\mathrm{H}^{+}(a q)$	$\mathrm{CH}_{3} \mathrm{Ce日H}(a q)$	Brønsted base
$\mathrm{H}_{2} \mathrm{PO}_{4^{-}}(a q)$	$\mathrm{H}_{+}^{+}(a q)+\mathrm{HPO}_{4}^{2-}(a q)$	Brønsted acid
$\mathrm{H}_{2} \mathrm{PO}_{4^{-}}(a q)+\mathrm{H}^{+}(a q)$	$\mathrm{H}_{3} \mathrm{PO}_{4}(a q)$	Brønsted base

Neutralization Reaction

acid + base \longrightarrow salt + water

$$
\begin{aligned}
& \mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-}-\mathrm{Na}+4 \mathrm{Cl}-+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Neutralization Reaction Involving a Weak Electrolyte

weak acid + base salt + water

$$
\begin{gathered}
\mathrm{HCN}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCN}(a q)+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCN}+\mathrm{Na}^{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{Na}^{+}+\mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCN}+\mathrm{OH}^{-} \longrightarrow \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Neutralization Reaction Producing a Gas

$$
\text { acid }+ \text { base } \quad \text { salt }+ \text { water }+\mathrm{CO}_{2}
$$

$2 \mathrm{HCl}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)-3 \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-} \quad-2 \mathrm{Na}^{+}+2 \mathrm{Cl}-+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

$$
2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}-\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Oxidation-Reduction Reactions

(electron transfer reactions)

$$
2 \mathrm{Mg}+\mathrm{O}_{2}+4 \mathrm{e} / / \longrightarrow 2 \mathrm{Mg}^{2+}+2 \mathrm{O}^{2-}+4 \mathrm{e}^{-}
$$

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

$$
\mathrm{Zn}(s)+\mathrm{CuSO}_{4}(a q) \quad-\mathrm{ZnSO}_{4}(a q)+\mathrm{Cu}(s)
$$

$\mathrm{Zn} \xrightarrow{\mathrm{Zn}}{ }^{+}+2 \mathrm{e}^{-}$
Zn is oxidized
Cu^{2+} is reduced

Zn is the reducing agent
Cu^{2+} is the oxidizing agent

Copper wire reacts with silver nitrate to form silver metal.
What is the oxidizing agent in the reaction?
$\mathrm{Cu}(s)+2 \mathrm{AgNO}_{3}(a q) \quad-\mathrm{Ct}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)$

$$
\mathrm{Cu} \xrightarrow{\mathrm{Cl}^{+}+2 \mathrm{e}^{-}}
$$

$$
\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \xrightarrow{\text { (g }} \quad \mathrm{Ag}^{+} \text {is reduced } \quad \mathrm{Ag}^{+} \text {is the oxidizing agent }
$$

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

$$
\mathrm{Na}, \mathrm{Be}, \mathrm{~K}, \mathrm{~Pb}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}=0
$$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

$$
\mathrm{Li}^{+}, \mathrm{Li}=+1 ; \mathrm{Fe}^{3+}, \mathrm{Fe}=+3 ; \mathrm{O}^{2-}, \mathrm{O}=-2
$$

3. The oxidation number of oxygen is usually -2 . In $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{O}_{2}{ }^{2-}$ it is -1 .
4. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1 .
5. Group IA metals are +1 , IIA metals are +2 and fluorine is always -1 .
6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.
7. Oxidation numbers do not have to be integers. Oxidation number of oxygen in the superoxide ion, O_{2}^{-}, is $-1 / 2$.
$\mathrm{HCO}_{3}{ }^{-}$
What are the oxidation numbers of all the elements in $\mathrm{HCO}_{3}{ }^{-}$?

$$
\begin{gathered}
\mathrm{O}=-2 \quad \mathrm{H}=+1 \\
3 \mathrm{x}(-2)+1+?=-1
\end{gathered}
$$

$$
\mathrm{C}=+4
$$

The Oxidation Numbers of Elements in their Compounds

What are the oxidation numbers of all the elements in each of these compounds?

$$
\mathrm{F}=-1
$$

$$
7 \mathrm{x}(-1)+?=0
$$

NaIO_{3}

$$
I=+7
$$

$$
\begin{aligned}
& \mathrm{Na}=+1 \quad \mathrm{O}=-2 \\
& 3 \mathrm{x}(-2)+1+?=0
\end{aligned}
$$

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

$$
\mathrm{I}=+5
$$

$$
\mathrm{O}=-2 \quad \mathrm{~K}=+1
$$

$$
7 x(-2)+2 x(+1)+2 x(?)=0
$$

$$
\mathrm{Cr}=+6
$$

Types of Oxidation-Reduction Reactions

Combination Reaction

$$
\begin{aligned}
\mathrm{A}+\mathrm{B} & \longrightarrow \mathrm{C} \\
2 \stackrel{0}{\mathrm{~A}}+3 \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{Al}^{+3-1} \mathrm{Br}_{3}
\end{aligned}
$$

Decomposition Reaction

$$
\mathrm{C} \longrightarrow \mathrm{~A}+\mathrm{B}
$$

$$
2 \mathrm{KClO}_{3}^{+1+5}-2 \xrightarrow{+1-1} \longrightarrow 2 \mathrm{KCl}^{0}+3 \mathrm{O}_{2}
$$

Types of Oxidation-Reduction Reactions

Combustion Reaction

$$
\mathrm{A}+\mathrm{O}_{2} \longrightarrow \mathrm{~B}
$$

$$
\stackrel{0}{\mathrm{~S}}+\stackrel{0}{\mathrm{O}_{2}} \longrightarrow \stackrel{+4-2}{\mathrm{SO}_{2}^{-2}}
$$

Types of Oxidation-Reduction Reactions

Displacement Reaction

$$
\mathrm{A}+\mathrm{BC} \longrightarrow \mathrm{AC}+\mathrm{B}
$$

$\stackrel{0}{\mathrm{Sr}}+2 \stackrel{+1}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \stackrel{+2}{\mathrm{Sr}}(\mathrm{OH})_{2}+\mathrm{H}_{2}{ }^{0} \quad$ Hydrogen Displacement
$\stackrel{+4}{\mathrm{TiCl}} \mathrm{H}_{4}+2 \stackrel{0}{\mathrm{Mg}} \longrightarrow \stackrel{0}{\mathrm{Ti}}+2 \stackrel{+2}{\mathrm{MgCl}_{2}} \quad$ Metal Displacement
$\stackrel{0}{\mathrm{C}} \mathrm{l}_{2}+2 \mathrm{KBr}^{-1} \longrightarrow 2 \mathrm{KCl}+\stackrel{0}{\mathrm{Br}}_{2}$

Halogen Displacement

The Activity Series for Metals

```
Li}->\mp@subsup{\textrm{Li}}{}{+}+\mp@subsup{e}{}{-
K}->\mp@subsup{\textrm{K}}{}{+}+\mp@subsup{e}{}{-
Ba}->\mp@subsup{\textrm{Ba}}{}{2+}+2\mp@subsup{e}{}{-
Ca}->\mp@subsup{\textrm{Ca}}{}{2+}+2e\mp@subsup{e}{}{-
Na}->\mp@subsup{\textrm{Na}}{}{+}+\mp@subsup{e}{}{-
Mg}->\mp@subsup{\textrm{Mg}}{}{2+}+2\mp@subsup{e}{}{-
Al }->\mp@subsup{\textrm{Al}}{}{3+}+3\mp@subsup{e}{}{-
Zn}->\mp@subsup{\textrm{Zn}}{}{2+}+2\mp@subsup{e}{}{-
Cr}->\mp@subsup{\textrm{Cr}}{}{3+}+3\mp@subsup{e}{}{-
Fe}->\mp@subsup{\textrm{Fe}}{}{2+}+2\mp@subsup{e}{}{-
Cd}->\mp@subsup{\textrm{Cd}}{}{2+}+2\mp@subsup{e}{}{-
Co }->\mp@subsup{\textrm{Co}}{}{2+}+2\mp@subsup{e}{}{-
Ni}->\mp@subsup{\textrm{Ni}}{}{2+}+2\mp@subsup{e}{}{-
Sn}->\mp@subsup{\textrm{Sn}}{}{2+}+2\mp@subsup{e}{}{-
Pb}->\mp@subsup{\textrm{Pb}}{}{2+}+2\mp@subsup{e}{}{-
H2}->2\mp@subsup{\textrm{H}}{}{+}+2\mp@subsup{e}{}{-
Cu}->\mp@subsup{\textrm{Cu}}{}{2+}+2\mp@subsup{e}{}{-
Ag}->\mp@subsup{\textrm{Ag}}{}{+}+\mp@subsup{e}{}{-
Hg}->\mp@subsup{\textrm{Hg}}{}{2+}+2\mp@subsup{e}{}{-
Pt}->\mp@subsup{\textrm{Pt}}{}{2+}+2\mp@subsup{e}{}{-
    React with cold
    water to produce }\mp@subsup{\textrm{H}}{2}{
    React with steam
    to produce }\mp@subsup{\textrm{H}}{2}{
    React with acids
    to produce }\mp@subsup{\textrm{H}}{2}{
    Do not react with water
    or acids to produce }\mp@subsup{\textrm{H}}{2}{
Au}->\mp@subsup{\textrm{Au}}{}{3+}+3\mp@subsup{e}{}{-
```

Hydrogen Displacement Reaction

$\mathrm{M}+\mathrm{BC} \longrightarrow \mathrm{MC}+\mathrm{B}$

M is metal
$B C$ is acid or $\mathrm{H}_{2} \mathrm{O}$
B is H_{2}
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
$\overline{\mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2}+\mathrm{H}_{2}}$

The Activity Series for Halogens

$$
\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}
$$

Halogen Displacement Reaction

$$
\stackrel{0}{\mathrm{Cl}}_{2}+2 \mathrm{KBr}^{-1} \longrightarrow 2 \mathrm{KCl}+\stackrel{-1}{\mathrm{Br}_{2}}
$$

Types of Oxidation-Reduction Reactions

Disproportionation Reaction
The same element is simultaneously oxidized and reduced.

Example:
reduced

Classify each of the following reactions.

$\mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CaCO}_{3}$
$\mathrm{NH}_{3}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+}$
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
$\mathrm{Ca}+\mathrm{F}_{2} \longrightarrow \mathrm{CaF}_{2}$

Precipitation
Acid-Base
Redox (H_{2} Displacement)

Redox (Combination)

Chemistry in Action: Breath Analyzer

$$
\begin{aligned}
& 3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \\
& 3 \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+11 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Solution Stoichiometry

The concentration of a solution is the amount of solute present in a given quantity of solvent or solution.

$$
\boldsymbol{M}=\boldsymbol{m o l a r i t y}=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

What mass of KI is required to make $500 . \mathrm{mL}$ of a 2.80 $M \mathrm{KI}$ solution?

$$
\begin{aligned}
& \text { volume of KI solution } \xrightarrow[\longrightarrow]{M \mathrm{KI}} \text { moles KI } \xrightarrow{M \mathrm{KI}} \text { grams KI } \\
& \text { 500. } \mathrm{pL} \mathrm{~K} \times \frac{1 \downarrow}{1000 \mathrm{~m} \mathrm{~L}}
\end{aligned} \times \frac{2.80 \mathrm{motKI}}{1 \mathrm{~L} \text { Koln }} \times \frac{166 \mathrm{~g} \mathrm{KI}}{1 \mathrm{mot} \mathrm{KI}}=232 \mathrm{~g} \mathrm{KI}
$$

Preparing a Solution of Known Concentration

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution.

Moles of solute after dilution (f)

How would you prepare 60.0 mL of $0.200 \mathrm{M} \mathrm{HNO}_{3}$ from a stock solution of $4.00 \mathrm{M} \mathrm{HNO}_{3}$?

$$
M_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=M_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
$$

$M_{\mathrm{i}}=4.00 M \quad M_{\mathrm{f}}=0.200 M \quad \mathrm{~V}_{\mathrm{f}}=0.0600 \mathrm{~L} \quad \mathrm{~V}_{\mathrm{i}}=? \mathrm{~L}$
$\mathrm{V}_{\mathrm{i}}=\frac{M_{\mathrm{f}} \mathrm{V}_{\mathrm{f}} 0}{M_{\mathrm{i}}}=\frac{200 M \times 0.0600 \mathrm{~L}}{4.00 M}=0.00300 \mathrm{~L}=3.00 \mathrm{~mL}$

Dilute 3.00 mL of acid with water to a total volume of 60.0 mL .

Gravimetric Analysis

1. Dissolve unknown substance in water
2. React unknown with known substance to form a precipitate
3. Filter and dry precipitate
4. Weigh precipitate
5. Use chemical formula and mass of precipitate to determine amount of unknown ion

Titrations

In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point - the point at which the reaction is complete

Indicator - substance that changes color at (or near) the equivalence point

Slowly add base to unknown acid UNTIL
the indicator changes color

Titrations can be used in the analysis of

Acid-base reactions

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Redox reactions
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

What volume of a 1.420 M NaOH solution is required to titrate 25.00 mL of a $4.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

WRITE THE CHEMICAL EQUATION!

$25.00 \mathrm{~mL} \times \frac{4.50 \mathrm{molH} \mathrm{H}_{2} \mathrm{SO}_{4}}{1000 \mathrm{~mL}} \times \frac{2 \underline{\mathrm{moln}} \mathrm{NaOH}}{1 \mathrm{~mol}_{2} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{1000 \mathrm{ml} \mathrm{soln}}{1.420 \mathrm{~mol} \mathrm{NaOH}}=158 \mathrm{~mL}$
16.42 mL of $0.1327 \mathrm{M} \mathrm{KnO}_{4}$ solution is needed to oxidize 25.00 mL of an acidic FeSO_{4} solution. What is the molarity of the iron solution?

WRITE THE CHEMICAL EQUATION!

$$
16.42 \mathrm{~mL}=0.01642 \mathrm{~L} \quad 25.00 \mathrm{~mL}=0.02500 \mathrm{~L}
$$

$$
0.01642 \mathrm{~L}_{\mathrm{x}} \frac{0.1327 \mathrm{molKVinO}_{4}}{1 \mathrm{~L}} \times \frac{5 \mathrm{~mol} \mathrm{Fe}^{2+}}{1 \mathrm{~mol}_{\mathrm{KMnO}}^{4}} \mathrm{C} \quad \times \frac{1}{0.02500 \mathrm{~L} \mathrm{Fe}^{2+}}=0.4358 \mathrm{M}
$$

Chemistry in Action: Metals from the Sea

 $\mathrm{CaCO}_{3}(s) \rightarrow+\mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$$$
\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{a}^{2+}(a q)+2 \mathrm{OH}(a \bar{q})
$$

$$
\mathrm{Mg}^{2+}(a q)+2 \mathrm{OH}(a q)-\mathrm{Mg}(\mathrm{OH})_{2}(s)
$$

$$
\mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{HCl}(a q)-\mathrm{MgCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

$$
\begin{aligned}
\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} & \xrightarrow{\mathrm{Mg}} \\
2 \mathrm{Cl}^{-} & \xrightarrow{C l^{*}}+2 \mathrm{e}^{-} \\
\mathrm{MgCl}_{2}(a q) & \xrightarrow[\mathrm{Mg}(s)+\mathrm{Cl}_{2}(g)]{ }
\end{aligned}
$$

Magnesium Hydroxide

