### Chapter 7: Respiration



## In open systems, cells require E to perform work (chemical, transport, mechanical)

E flows into ecosystem as Sunlight

Autotrophs transform it into chemical E

O<sub>2</sub> released as byproduct

Cells use some of chemical E in organic molecules to make ATP

E leaves as heat





Complex organic molecules



Some E used to do work and dissipated as heat Respiration: exergonic (releases E)

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2 + ATP$$
(+ heat)

<u>Photosynthesis</u>: endergonic (requires E)

$$6H_2O + 6CO_2 + Light \rightarrow C_6H_{12}O_6 +$$

#### Redox Reactions (oxidation-reduction)

- Oxidation = lose e
- Reduction = gain e<sup>-</sup>

-OiLRiG or LeoGer

oxidation

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2 + 6CO_2$$



© 2016 Pearson Education, Inc.

#### Energy Harvest

- Energy is released as electrons "fall" from organic molecules to  $O_2$
- Broken down into steps:

Food (Glucose)  $\rightarrow$  NADH  $\rightarrow$  ETC  $\rightarrow$  O<sub>2</sub>

- Coenzyme NAD+ = electron acceptor
- NAD+ picks up 2e- and 2H+ → NADH (stores E)
- NADH carries electrons to the electron transport chain (ETC)
- ETC: transfers  $e^-$  to  $O_2$  to make  $H_2O$ ; releases energy

#### NAD<sup>+</sup> as an electron shuttle



#### Electron Transport Chain



#### Stages of Cellular Respiration

- I. Glycolysis
- Pyruvate Oxidation + Citric Acid Cycle (Krebs Cycle)
- 3. Oxidative Phosphorylation (electron transport chain (ETC) & chemiosmosis)

#### Overview of Cellular Respiration



# Cellular Respiration Stage I: Glycolysis



#### Glycolysis

- "sugar splitting"
- Believed to be ancient (early prokaryotes no
   O<sub>2</sub> available)
- Occurs in cytosol
- Partially oxidizes glucose (6C) to 2 pyruvates (3C)
- Net gain: 2 ATP + 2NADH
- Also makes 2H<sub>2</sub>O
- No O<sub>2</sub> required

#### Glycolysis

#### Stage I: Energy Investment Stage

Cell uses ATP to phosphorylate compounds of glucose

#### Stage 2: Energy Payoff Stage

- Two 3-C compounds oxidized
- For each glucose molecule:
  - 2 Net ATP produced by substrate-level phosphorylation
  - 2 molecules of NAD+ → NADH

#### Substrate-Level Phosphorylation

- Generate small amount of ATP
- Phosphorylation: enzyme transfers a phosphate to other compounds

**—** compound

 $\blacksquare ADP + P_i \rightarrow ATP$ 



#### **GLYCOLYSIS: Energy Investment Phase**



© 2016 Pearson Education, Inc.



#### Glycolysis (Summary)



# Cellular Respiration Stage 2: Pyruvate Oxidation + Citric Acid Cycle



#### Mitochondrion Structure



Citric Acid



#### Pyruvate Oxidation

- Pyruvate → Acetyl CoA (used to make citrate)
- CO<sub>2</sub> and NADH produced





#### Citric Acid Cycle (Krebs)

- Occurs in mitochondrial matrix
- Acetyl CoA → Citrate → COreleased
- Net gain: 2 ATP, 6 NADH, 2 FADH<sub>2</sub> (electron carrier)
- ATP produced by substrate-level phosphorylation



### Summary of Citric Acid Cycle



@ 2016 Pearson Education, Inc.

http://multimedia.mcb.harvard.edu/anim\_mitochondria.html

# BioVisions at Harvard: The Mitochondria

# Cellular Respiration Stage 3: Oxidative Phosphorylation



#### Oxidative Phosphorylation

#### ELECTRON TRANSPORT CHAIN

- Occurs in inner membrane of mitochondria
- Produces 26-28 ATP by oxidative phosphorylation via chemiosmosis

#### **CHEMIOSMOSIS**

- H+ ions pumped across inner mitochondrial membrane
- H+ diffuse through ATP synthase (ADP → ATP)

#### Electron Transport Chain (ETC)

- Collection of molecules embedded in inner membrane of mitochondria
- Tightly bound protein + nonprotein components
- Alternate between reduced/ oxidized states as accept/donate e-
- Does <u>not</u> make ATP directly
- Ease fall of e- from food to  $O_2$
- $2H^+ + \frac{1}{2} O_2 \rightarrow H_2O$



### As electrons move through the ETC, proton pumps move H<sup>+</sup> across inner mitochondrial membrane



### Chemiosmosis: Energy-Coupling

#### Mechanism

- Chemiosmosis = H+ gradient across membrane drives cellular work
- Proton-motive force: use proton
   (H+) gradient to perform work
- ATP synthase: enzyme that makes ATP
- Use E from proton (H+) gradient –
   flow of H+ back across membrane



#### Chemiosmosis couples the ETC to ATP synthesis



#### oxidative phosphorylation uses generates which couples chemiosmosis proton **ATP** H+ Dumped from matrix to gradient to produce intermembrane space uses E called redox reactions proton motive force of **ETC** drives in which H+ e- passed down through E levels ATP synthase to final e- acceptor

# ATP yield per molecule of glucose at each stage of cellular respiration



## BioFlix: Cellular Respiration

#### Non-Shivering Thermogenesis

- Allows endotherms to generate a lot of HEAT
- Thermogenin (UCPI): uncoupling protein found in mitochondria of brown adipose (fat) tissue
  - Decreases proton gradient allows protons that were pumped into the intermembrane space to return to mitochondrial matrix
  - Fast substrate oxidation, but low ATP production
- Brown adipose tissue abundant in newborns and hibernating animals

# Decoupling oxidative phosphorylation from electron transport generates heat



Coupling

Uncoupling

# Brown Adipose Tissue

#### Human hotspots

It was thought that only babies (below left) have brown fat, a special type of tissue that turns food energy into heat. New scans have revealed the tissue remains in at least some adults, as in the one here (below right)



# Anaerobic Respiration

- **Anaerobic Respiration**: generate ATP using other electron acceptors besides  $O_2$ 
  - Final e- acceptors: sulfate (SO<sub>4</sub>), nitrate, sulfur (produces H<sub>2</sub>S)
  - Eg. Obligate anaerobes: can't survive in O<sub>2</sub>

- Facultative anaerobes: make ATP by aerobic respiration (with  $O_2$  present) or switch to fermentation (no  $O_2$  available)
  - Eg. human muscle cells

#### Fermentation = glycolysis + regeneration of NAD+



#### Glycolysis

Without O<sub>2</sub>

O<sub>2</sub> present

#### **FERMENTATION**

- Keep glycolysis going by regenerating NAD+
- Occurs in cytosol
- No oxygen needed
- Creates ethanol [+CO<sub>2</sub>] or lactate
- 2 ATP (from glycolysis)

#### **RESPIRATION**

- Release E from
   breakdown of food with
   O<sub>2</sub>
- Occurs in mitochondria
- O<sub>2</sub> required (final electron acceptor)
- Produces CO<sub>2</sub>, H<sub>2</sub>O andup to 32 ATP

#### Types of Fermentation

#### **ALCOHOL FERMENTATION**

- Pyruvate  $\rightarrow$  Ethanol +  $CO_2$
- Ex. bacteria, yeast
- Used in brewing, winemaking, baking

#### LACTIC ACID FERMENTATION

- Pyruvate → Lactate
- Ex. fungi, bacteria, human muscle cells
- Used to make cheese, yogurt, acetone, methanol
- Note: Lactate build-up does NOT causes muscle fatigue and pain (old idea)



#### Fermentation at Work



Decomposition: Bloat stage (H<sub>2</sub> and CO<sub>2</sub> gases from anaerobic fermentation of gut bacteria)

Sugar + Bacteria = Plaque
Bacterial fermentation →
Lactic Acid → Cavities







H<sub>2</sub> and CO<sub>2</sub> gases from anaerobic fermentation of gut bacteria

#### Various sources of fuel

- Carbohydrates, fats and proteins can ALL be used as fuel for cellular respiration
- Monomers enter glycolysis or citric acid cycle at different points



#### Phosphofructokinase (PFK)

 Allosteric enzyme that controls rate of glycolysis and citric acid cycle

- Inhibited by ATP, citrate
- Stimulated by AMP
  - $\blacksquare$  AMP+ P + P  $\rightarrow$  ATP



# Respiration: Big Picture





### Glycolysis & Citric Acid Cycle



## Oxidative Phosphorylation





**Electron Transport Chain** 

**Chemiosmosis** 



# GELLULAR RESPIRATION



YOUREGONNA HAVEAGAD TIME