Chapter 9: The Cell Cycle

What you must know:

- The structure of the replicated chromosome.
- The events that occur in interphase of the cell cycle (G1, S, G2).
- The role of cyclins and cyclin-dependent kinases in the regulation of the cell cycle.
- Ways in which the normal cell cycle is disrupted to cause cancer or halted in certain specialized cells.
- The features of mitosis that result in the production of genetically identical daughter cells including replication, alignment of chromosomes (metaphase), and separation of chromosomes (anaphase).

THE AVERAGE LIFE OF YOUR CELLS

<u>Cell Cycle</u>: life of a cell from its formation until it divides into two cells

Functions of Cell

Division: Reproduction,
Growth and Tissue
Repair

Genome = all of a cell's genetic info (DNA)

Prokaryote: single, circular chromosome

<u>Eukaryote</u>: more than one linear chromosomes

▶ Eg. Human:46 chromosomes, mouse: 40, fruit

fly: 8

Each chromosome must be duplicated (replicated) before cell division

Duplicated chromosome = 2 sister chromatids attached by a centromere
Chromosomal

Somatic Cells

- Body cells
- Diploid (2n): 2 of each type of chromosome
- Divide by mitosis

Humans: 2n = 46

Gametes

- Sex cells (sperm/egg)
- Haploid (n): 1 of each type of chromosome
- Divide by meiosis

▶ Humans: n = 23

Phases of the Cell Cycle

Phases of the Cell Cycle

- The mitotic phase alternates with interphase:
 - $G_1 \rightarrow S \rightarrow G_2 \rightarrow mitosis \rightarrow cytokinesis$
- Interphase (90% of cell cycle)
- ▶G₁ Phase: cell grows and carries out normal functions
- S Phase: duplicates chromosomes (DNA replication)
- ▶G₂ Phase: prepares for cell division
- M Phase (mitotic)
- Mitosis: nucleus divides
- Cytokinesis: cytoplasm divides

Mitosis: Prophase → Metaphase → Anaphase → Telophase

Mitosis

- Continuous process with observable structural features:
 - Chromosomes become visible (prophase)
 - Alignment at the equator (metaphase)
 - Separation of sister chromatids (anaphase)

Prophase & Prometaphase

Metaphase & Anaphase

Metaphase

Metaphase plate Spindle Centrosome at one spindle pole

Anaphase

Telophase & Cytokinesis

Cytokinesis

- Cytoplasm of cell divided
- Animal Cells: cleavage furro
- Plant Cells: cell plate forms

Telophase and Cytokinesis

Cytokinesis in Animal vs. Plant Cells

Animal Cell Division

Plant Cell Division

Which phases of the cell cycle can you identify?

Which phases of the cell cycle can you identify?

Bacterial cells divide by Binary Fission

Origin of Cell wall replication -Plasma membrane E. coli cell Chromosome **Bacterial** Two copies replication begins. chromosome of origin. Origin Origin One copy of the origin is now at each end of the cell. Replication finishes. 4 Two daughter cells result.

Cell Cycle Control System

Checkpoint = control point where stop/go signals regulate the cell cycle

Major Checkpoints

- G₁ checkpoint (Most important!)
 - Controlled by cell size, growth factors, environment
 - "Go" → completes whole cell cycle
 - "Stop" \rightarrow cell enters nondividing state (G_0 Phase)
 - Nerve, muscle cells stay at G₀; liver cells called back from G₀

2. G₂ checkpoint

- Controlled by DNA replication completion, DNA mutations, cell size
- M-spindle (Metaphase) checkpoint
 - Check spindle fiber (microtubule) attachment to chromosomes at kinetochores (anchor sites)

G₁ Checkpoint

Without go-ahead signal, cell enters G₀.

(a) G₁ checkpoint

© 2016 Pearson Education, Inc.

With go-ahead signal, cell continues cell cycle.

M Checkpoint

Without full chromosome attachment, stop signal is received.

(b) M checkpoint

@ 2016 Pearson Education. Inc

Anaphase Checkpoint

Metaphase

With full chromosome attachment, go-ahead signal is received.

M-spindle Checkpoint: Mitotic spindle at metaphase

Internal Regulatory Molecules

- (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle
- Kinases (cyclin-dependent kinase, Cdk): protein enzyme controls cell cycle; active when connected to cyclin
- Cyclins: proteins which attach to kinases to activate them; levels fluctuate in the cell cycle

Internal Regulatory Molecules

MPF = maturation-promoting factor

 specific cyclin-Cdk complex which allows cells to pass G₂ and go to M phase

(b) Molecular mechanisms that help regulate the cell cycle

External Regulatory Factors

Anchorage dependence: cells require a surface for division

Density-dependent inhibition: cells form a single layer

Density-dependent inhibition: cells divide to fill a gap and then stop

Normal mammalian cells

(b) Cancer cells

External Regulatory Factors

- Growth Factor: proteins released by other cells to stimulate cell division
- Density-Dependent Inhibition: crowded cells normally stop dividing; cell-surface protein binds to adjoining cell to inhibit growth
- Anchorage Dependence: cells must be attached to another cell or ECM (extracellular matrix) to divide

Cancer Cells

Cancer: Disorder in which cells lose the ability to control growth by not responding to regulation.

- multistep process of about 5-7 genetic changes (for a human) for a cell to transform
- loses anchorage dependency and density-dependency regulation

20 μm

20 μm

(a) Normal mammalian cells

(b) Cancer cells
© 2016 Pearson Education. Inc.

Transformation: Process that converts a normal cell to a cancer cell

Tumors = mass of abnormal cells

- Benign tumor: lump of cells remain at original site
- Malignant tumor: invasive impairs functions of 1+ organs (called cancer)
- Metastasis: cells separate from tumor and travel to other parts of body

Normal and Cancer Cells

Structure

- Large cytoplasm
- Single nucleus
- Single nucleolus
- Fine chromatin

- Small cytoplasm
- Multiple nuclei
- Multiple and large nucleoli
- Coarse chromatin

Cancer Cells

- Some have abnormal #'s of chromosomes
- Metabolism disabled
- ▶ Lose attachment to ECM → spread to other tissues
- Signaling molecules cause blood vessels to grow toward tumor

Treatment:

- Surgery, radiation, chemotherapy
- Personalized Medicine:
 - ▶ Breast Cancer: 20-25% tumors show high HER2 receptors → use Herceptin to block HER2 protein

Cancer Risk Factors

Anyone can get cancer but there are ways to minimize risk:

- Don't smoke, legal or illegal (includes hookahs, chew, 2nd-hand smoke)
- Use sun protection
- Exercise and keep weight at ideal level
- Eat 5-7 servings of fruit and veggies a day
- Use screening/preventative measures-breast/testicle/ mole checks
- Practice abstinence or use condoms
- Vaccines (eg. HPV)

RECOMMENDATIONS

IF YOU BREASTFEED YOUR BABY

SUPPLEMENTS

And always remember do not smoke or chew tobacco.

Summary of the Cell Cycle

