Chapter 5

Membrane Structure and

Function

What You Must Know:

- Why membranes are selectively permeable.
- The role of phospholipids, proteins, and carbohydrates in membranes.
- How water will move if a cell is placed in an isotonic, hypertonic, or hypotonic solution and be able to predict the effect of different environments on the organism.
- How electrochemical gradients and proton gradients are formed and function in cells.

Cell Membrane

- A. Plasma membrane is **selectively permeable**
 - Allows some substances to cross more easily than others

B. Fluid Mosaic Model

- Fluid: membrane held together by weak interactions
- Mosaic: phospholipids, proteins, carbs

Early membrane model

- (1935) Davson/Danielli –
 Sandwich model
- phospholipid bilayer between 2 protein layers
- Problems: varying chemical composition of membrane, hydrophobic protein parts

Copyright © Pearson Education, Inc., publishing a

The freeze-fracture method: revealed the structure of membrane's interior

Fluid Mosaic Model

Phospholipids

- Bilayer
- Amphipathic =
 hydrophilic head,
 hydrophobic tail
- Hydrophobic barrier: keeps hydrophilic molecules out

© 2016 Pearson Education, Inc.

Membrane fluidity

- Low temps: phospholipids w/ unsaturated tails (kinks prevent close packing)
- Cholesterol resists changes by:
 - limit fluidity at high temps
 - hinder close packing at low temps

(a) Unsaturated versus saturated hydrocarbon tails.

(b) Cholesterol reduces membrane fluidity at moderate temperatures, but at low temperatures hinders solidification.

Adaptations: bacteria in hot springs (unusual lipids);
 winter wheat (↑ unsaturated phospholipids)

Membrane Proteins

Integral Proteins

- Embedded in membrane
- Determined by freeze fracture
- Transmembrane with hydrophilic heads/tails and hydrophobic middles

Peripheral Proteins

- Extracellular or cytoplasmic sides of membrane
- NOT embedded
- Held in place by the cytoskeleton or ECM
- Provides stronger framework

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Integral & Peripheral proteins

Transmembrane protein structure

Hydrophobic interior

Some functions of membrane proteins

(a) Transport

(b) Enzymatic activity

(c) Signal transduction

(d) Cell-cell recognition

(e) Intercellular joining

(f) Attachment to the cytoskeleton and extracellular matrix (ECM)

Carbohydrates

- <u>Function</u>: cell-cell recognition; developing organisms
- Glycolipids, glycoproteins
- Eg. blood transfusions are type-specific

Synthesis and sidedness of membranes

Selective Permeability

- Small nonpolar molecules cross easily: hydrocarbons, hydrophobic molecules, CO₂, O₂, N₂
- Polar uncharged molecules, including H2O pass in small amounts
- Hydrophobic core prevents passage of ions, large polar molecules – movement through embedded channel and transport proteins

Passive Transport

- NO ENERGY (ATP) needed!
- Diffusion down concentration gradient (high → low concentration)
- Eg. hydrocarbons, CO_2 , O_2 , H_2O_3

Diffusion

© 2016 Pearson Education, Inc.

External environments can be hypotonic, isotonic or hypertonic to internal environments of cell

Understanding Water Potential

Water Potential

Water potential (ψ): H_2O moves from high $\psi \rightarrow low \psi$ potential

Water potential equation:

$$\psi = \psi_{S} + \psi_{P}$$

- Water potential (ψ) = free energy of water
- Solute potential (ψ_s) = solute concentration (osmotic potential)
- Pressure potential (ψ_P) = physical pressure on solution; *turgor pressure* (*plants*)
 - Pure water: $\psi_{\mathbf{p}} = 0$ MPa
 - Plant cells: $\psi_{\mathbf{p}} = 1 \text{ MPa}$

Calculating Solute Potential (ψ_s)

$$\psi_{S} = -iCRT$$

- i = ionization constant (# particles made in water)
- C = molar concentration
- R = pressure constant (0.0831 liter bars/mole-K)
- $T = \text{temperature in } K (273 + {}^{0}C)$
- The **addition of solute** to water *lowers* the solute potential (more **negative**) and therefore *decreases* the water potential.

Where will WATER move?

From an area of:

- higher ψ \rightarrow lower ψ (more negative ψ)
- low solute concentration → high solute concentration
- high pressure → low pressure

- 1. Which chamber has a lower water potential?
- 2. Which chamber has a lower solute potential?
- 3. In which direction will osmosis occur?
- 4. If one chamber has a Ψ of -2000 kPa, and the other -1000 kPa, which is the chamber that has the higher Ψ ?

Figure 36-3 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Low water potential
Atmosphere ♥: -95.2 MPa
(Changes with humidity;
usually very low)

Leaf ψ : −0.8 MPa (Depends on transpiration rate; low when stomata are open)

Root ψ : -0.6 MPa (Medium-high)

Soil ψ: −0.3 MPa (High if moist; low if extremely dry)

High water potential

Sample Problem

1. Calculate the solute potential of a 0.1M NaCl solution at 25°C.

2. If the concentration of NaCl inside the plant cell is 0.15M, which way will the water diffuse if the cell is placed in the 0.1M NaCl solution?

Facilitated Diffusion

<u>Transport proteins</u> (channel or carrier proteins) help <u>hydrophilic</u> substances cross

- ■Two ways:
 - Provide hydrophilic channel
 - Loosely bind/carry molecule across
- Eg. ions, polar molecules (H₂O, glucose)

(b) A carrier protein

Aquaporin: channel protein that allows passage of H₂O

Glucose Transport Protein (carrier protein)

Active Transport

- Requires **ENERGY** (ATP)
- Proteins transport substances
 against concentration gradient (low
 - → high conc.)
- Eg. Na+/K+ pump, proton pump

Active transport

© 2011 Pearson Education, Inc.

Electrogenic Pumps: generate voltage across membrane

Na+/K+ Pump

Proton Pump

- Push protons (H+) across membrane
- Eg. mitochondria (ATP production)

- Pump Na+ out, K+ into cell
- Nerve transmission

<u>Cotransport</u>: membrane protein enables "downhill" diffusion of one solute to drive "uphill" transport of other

Eg. sucrose-H⁺ cotransporter (sugar-loading in plants)

Passive vs. Active Transport

- Little or no Energy
- High → low concentrations
- DOWN the concentration gradient
- eg. diffusion, osmosis, facilitated diffusion (w/ transport protein)

- Requires Energy (ATP)
- Low → high concentrations
- AGAINST the concentration gradient
- eg. pumps, exo/ endocytosis

Passive transport

Diffusion Facilitated diffusion

Active transport

Osmoregulation

- Control solute & water balance
- Contractile vacuole: "bilge pump" forces out fresh water as it enters by osmosis
- Eg. paramecium caudatum freshwater protist

Bulk Transport

Transport of proteins, polysaccharides, large molecules

Endocytosis: take in macromolecules and particulate matter, form new vesicles from plasma membrane

Exocytosis: vesicles fuse with plasma membrane, secrete contents out of cell

Types of Endocytosis

Phagocytosis:

"cellular eating" Solids Phagocytosis

Pinocytosis:

"cellular drinking" - fluids

Pinocytosis

Receptor-Mediated Endocytosis

Receptor-Mediated Endocytosis:

Ligands bind to specific receptors on

© 2016 Pearson Education, Inc.

MEMBRANE PRANKS